RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Genetic analysis of genetic basis of a physiological disorder ‘‘straighthead’’ in rice (Oryza sativa L.)

        Dianxing Wu,Xiaobai Li,Wengui Yan,Hesham Agrama,Aaron Jackson,Melissa Jia,Limeng Jia,Karen Moldenhauer,Fernando Correa 한국유전학회 2016 Genes & Genomics Vol.38 No.5

        Straighthead is a physiological disorder in rice that causes yield losses and is a serious threat to rice production worldwide. Identification of QTL conferring resistance will help develop resistant cultivars for straighthead control. We conducted linkage mapping to identify QTL involved with straighthead. The study was based on a F2 population developed from a cross between ‘Zhe733(resistant)/R312(susceptible)’. Using phenotypic data of F2 plants and their F2:3 families, two major QTL, qSTH-2 and qSTH-8, were identified using bulked segregant analysis, explaining 11.1 and 28.1 % of the phenotypic variation on chromosome 2 and 8, respectively. The qSTH-2 for straighthead resistance was identified by linkage mapping. qSTH-2 was situated near a QTL ‘‘AsS’’ responsible for arsenic accumulation. Straighthead is frequently observed on land where As has accumulated. The result suggests a kind of internal connection between qSTH-2 and AsS. Additionally, the QTL qSTH-8 was located close to HD5 related with heading date. The close location may be associated with the observation of early heading among straighthead resistant varieties. These findings should be useful for further genetic study of straighthead.

      • KCI등재

        Identifying genes for resistant starch, slowly digestible starch, and rapidly digestible starch in rice using genome-wide association studies

        Ning Zhang,Maike Wang,Ji Fu,Yi Shen,Yi Ding,Dianxing Wu,Xiaoli Shu,Wenjian Song 한국유전학회 2020 Genes & Genomics Vol.42 No.11

        Background The digestibility of starch is important for the nutritive value of staple food. Although several genes are responsible for resistant starch (RS) and slowly digestible starch (SDS), gaps persist concerning the molecular basis of RS and SDS formation due to the complex genetic mechanisms of starch digestibility. Objectives The objective of this study was to identify new genes for starch digestibility in rice and interprete the genetic mechanisms of RS and SDS by GWAS. Methods Genome-wide association studies were conducted by associating the RS and SDS phenotypes of 104 re-sequenced rice lines to an SNP dataset of 2,288,867 sites using a compressed mixed linear model. Candidate genes were identifed according to the position of the SNPs based on data from the MSU Rice Genome Annotation Project. Results Seven quantitative trait loci (QTLs) were detected to be associated with the RS content, among which the SNP 6 m1765761 was located on Waxy. Starch branching enzymes IIa (BEIIa) close to QTL qRS-I4 was detected and further identifed as a specifc candidate gene for RS in INDICA. Two QTLs were associated with SDS, and the LOC_Os09g09360 encoding lipase was identifed as a causal gene for SDS. Conclusions GWAS is a valid strategy to genetically dissect the formation of starch digestion properties in rice. RS formation in grains is dependent on the rice type; lipid might also contribute to starch digestibility and should be an alternative factor to improve rice starch digestibility.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼