RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Turbulent-image Restoration Based on a Compound Multibranch Feature Fusion Network

        Banglian Xu,Yao Fang,Leihong Zhang,Dawei Zhang,Lulu Zheng Optical Society of Korea 2023 Current Optics and Photonics Vol.7 No.3

        In middle- and long-distance imaging systems, due to the atmospheric turbulence caused by temperature, wind speed, humidity, and so on, light waves propagating in the air are distorted, resulting in image-quality degradation such as geometric deformation and fuzziness. In remote sensing, astronomical observation, and traffic monitoring, image information loss due to degradation causes huge losses, so effective restoration of degraded images is very important. To restore images degraded by atmospheric turbulence, an image-restoration method based on improved compound multibranch feature fusion (CMFNetPro) was proposed. Based on the CMFNet network, an efficient channel-attention mechanism was used to replace the channel-attention mechanism to improve image quality and network efficiency. In the experiment, two-dimensional random distortion vector fields were used to construct two turbulent datasets with different degrees of distortion, based on the Google Landmarks Dataset v2 dataset. The experimental results showed that compared to the CMFNet, DeblurGAN-v2, and MIMO-UNet models, the proposed CMFNetPro network achieves better performance in both quality and training cost of turbulent-image restoration. In the mixed training, CMFNetPro was 1.2391 dB (weak turbulence), 0.8602 dB (strong turbulence) respectively higher in terms of peak signal-to-noise ratio and 0.0015 (weak turbulence), 0.0136 (strong turbulence) respectively higher in terms of structure similarity compared to CMFNet. CMFNetPro was 14.4 hours faster compared to the CMFNet. This provides a feasible scheme for turbulent-image restoration based on deep learning.

      • KCI등재

        Photocatalytic conversion of nitrite in aqueous solution over nanocomposite photocatalyst Er3+:Y3Al5O12/BiPO4 using different photosources

        Yidi Wang,Bowen Li,Guanshu Li,Yingying Huang,Dawei Fang,Jun Wang,Youtao Song 한국공업화학회 2017 Journal of Industrial and Engineering Chemistry Vol.47 No.-

        Three crystal phases of BiPO4 (HBIP, nMBIP and mMBIP), corresponding photocatalysts (Er3+:Y3Al5O12/HBIP, Er3+:Y3Al5O12/nMBIP and Er3+:Y3Al5O12/mMBIP) and their nanocomposite photocatalyst (Er3+:Y3Al5O12/(H-nM-mM)BIP) were prepared by hydrothermal, ultrasonic dispersion and liquid boilingmethods. The prepared photocatalysts were characterized by X-ray diffractometer (XRD), energydispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and UV–vis diffuse reflectancespectra (DRS). The catalytic activity of prepared photocatalysts was evaluated via photocatalyticconversion rate of nitrite under ultraviolet-light, visible-light and simulated solar-light irradiations. These three photocatalysts all exhibited excellent performance under simulated solar-light irradiationand reached 85.36%, 84.42% and 78.53% conversion rates, respectively, for Er3+:Y3Al5O12/mMBIP, Er3+:Y3Al5O12/nMBIP and Er3+:Y3Al5O12/HBIP. Particularly, Er3+:Y3Al5O12/(H-nM-mM)BIP was also found toplay a high catalytic activity, resulting in 78.68%, 70.04% and 82.57% conversion rates, respectively, underultraviolet-light, visible-light and simulated solar-light irradiation. In addition, the study of used timesshowed that the prepared photocatalysts can be effectively recycled without an apparent inactivation onthe photocatalytic activity. This research may provide a potential way for converting nitrite and othercontaminants by utilizing solar energy efficiently.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼