RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Flame retardancy and thermal degradation behavior of red gum wood treated with hydrate magnesium chloride

        Yiqiang Wu,Chunhua Yao,Yunchu Hu,Shoulu Yang,Yan Qing,Qinglin Wu 한국공업화학회 2014 Journal of Industrial and Engineering Chemistry Vol.20 No.5

        Flame retardancy and thermal degradation of wood treated with magnesium chloride (MgCl2 6H2O) were investigated. Results showed that MgCl2 6H2O decreased flame intensity and heat release rate, and reduced smoke concentration and gas yield. From ambient temperature to 250 ℃, MgCl2 6H2O reduced wood combustibility by gas dilution mechanism. The chemical started to decompose at 350 8C and produced MgOHCl, in which -Cl and -Mg free radicals were generated and intervened the chain reactions of wood combustion. Hydrogen chloride gas generated promoted wood charring. MgCl2 6H2O gradually converted to MgOHCl and MgO compounds at higher temperatures, and MgO suppressed wood combustion by the wall effect mechanism.

      • KCI등재

        An Improved Soft Actor-Critic-Based Energy Management Strategy of Fuel Cell Hybrid Vehicles with a Nonlinear Fuel Cell Degradation Model

        Dongfang Zhang,Yunduan Cui,Yao Xiao,Shengxiang Fu,Suk Won Cha,Namwook Kim,Hongyan Mao,Chunhua Zheng 한국정밀공학회 2024 International Journal of Precision Engineering and Vol.11 No.1

        With the rapid development of artificial intelligence, deep reinforcement learning (DRL)-based energy management strategies (EMSs) have become an important research direction for hybrid electric vehicles recently, which still face some problems such as fragile convergence characteristics, slower convergence speed, and unsatisfactory optimization effects. In this research, a novel DRL algorithm, i.e. an improved soft actor-critic (ISAC) algorithm is applied to the EMS of a fuel cell hybrid vehicle (FCHV), in which the priority experience replay (PER) and emphasizing recent experience (ERE) methods are adopted to improve the convergence performance of the algorithm and to enhance the FCHV fuel economy. In addition, the fuel cell durability is also considered in the proposed EMS based on a nonlinear fuel cell degradation model while considering the fuel economy. Results indicate that the FCHV fuel consumption of the proposed EMS is decreased by 7.87%, 2.79%, and 2.44% compared to that of the deep deterministic policy gradient (DDPG)-based, the twin delayed deep deterministic policy gradient (TD3)-based, and the SAC-based EMSs respectively while the fuel consumption gap to the dynamic programming-based EMS is narrowed to 2.37% by the proposed EMS. Moreover, the proposed EMS presents the best training performance considering both the convergence speed and stability, and the convergence speed of the proposed EMS is increased by an average of 47.89% compared to that of the other DRL-based EMSs. Furthermore, the fuel cell durability is improved by more than 95% using the proposed EMS compared to that of the EMS without considering the fuel cell degradation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼