RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Functional role of Forskolin and PD166285 in the development of denuded mouse oocytes

        Hongguo Cao,Yani Bian,Fei Zhang,Yunshu Tang,Caixia Li,Jiemei Chen,Xiao-Rong Zhang 아세아·태평양축산학회 2018 Animal Bioscience Vol.31 No.3

        Objective: cAMP and mature promoting factor (MPF) play critical roles during the maturation of mammalian oocytes. The aim of this study was to produce the offspring from denuded oocytes (DOs) in mice by regulating cAMP and MPF. Methods: In this study, we used DOs at the germinal vesicle (GV) stage in mice and regulated levels of cAMP and MPF in DOs by adding Forskolin and PD166285 during in vitro maturation without follicle stimulating hormone and luteinizing hormone, respectively. Results: Combined use of 50 μM Forskolin for 3 h and 2.5 μM PD166285 for additional 21 h enhanced the developmental competence of DOs, maturation rate of DOs was 76.71%± 4.11%, blastocyst rate was 18.33%±4.44% after parthenogenetic activation (PA). The DOs could successfully be fertilized with sperm in vitro, cleavage rate was 17.02%±5.82% and blastocyst rate was 5.65%±3.10%. Besides, 2-cell in vitro fertilization embryos from DOs produced 4 normal live offspring (4/34). Conclusion: The results confirmed that the combination of Forskolin and PD166285 can induce DOs to complete meiosis process and produce normal offspring.

      • KCI등재후보

        Antioxidant activity and metabolic regulation of sodium salicylate on goat sperm at low temperature

        Shen Wenzheng,Fu Yu,Bai Haiyu,Zhang Zhiyu,Cao Zhikun,Liu Zibo,Yang Chao,Sun Shixin,Wang Lei,Ren Chunhuan,Ling Ying-hui,Zhang Zi Jun,Cao Hongguo 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.4

        Objective: The purpose of this study was to explore the effect of sodium salicylate (SS) on semen preservation and metabolic regulation in goats. Methods: Under the condition of low temperature, SS was added to goat semen diluent to detect goat sperm motility, plasma membrane, acrosome, antioxidant capacity, mitochondrial membrane potential (MMP) and metabonomics. Results: The results show that at the 8th day of low-temperature storage, the sperm motility of the 20 μM SS group was 66.64%, and the integrity rates of the plasma membrane and acrosome were both above 60%, significantly higher than those of the other groups. The activities of catalase and superoxide dismutase in the sperm of the 20 μM SS group were significantly higher than those of the control group, the contents of reactive oxygen species and malondialdehyde were significantly lower than those in the control group, the MMP was significantly higher than that in the control group, and the contents of Ca2+ and total cholesterol were significantly higher than those in the control group. Through metabonomics analysis, there were significant metabolic differences between the control group and the 20 μM SS group. Twenty of the most significant metabolic markers were screened, mainly involving five metabolic pathways, of which nicotinic acid and nicotinamide metabolic pathways were the most significant. Conclusion: The results indicate that SS can effectively improve the low-temperature preservation quality of goat sperm.

      • SCIESCOPUSKCI등재

        MiR-188-5p regulates the proliferation and differentiation of goat skeletal muscle satellite cells by targeting calcium/calmodulin dependent protein kinase II beta

        Jing Jing,Sihuan Zhang,Jinbo Wei,Yuhang Yang,Qi Zheng,Cuiyun Zhu,Shuang Li,Hongguo Cao,Fugui Fang,Yong Liu,Ying-hui Ling Asian Australasian Association of Animal Productio 2023 Animal Bioscience Vol.36 No.12

        Objective: The aim of this study was to reveal the role and regulatory mechanism of miR-188-5p in the proliferation and differentiation of goat muscle satellite cells. Methods: Goat skeletal muscle satellite cells isolated in the pre-laboratory were used as the test material. First, the expression of miR-188-5p in goat muscle tissues at different developmental stages was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, miR-188-5p was transfected into goat skeletal muscle satellite cells by constructing mimics and inhibitors of miR-188-5p, respectively. The changes of differentiation marker gene expression were detected by qPCR method. Results: It was highly expressed in adult goat latissimus dorsi and leg muscles, goat fetal skeletal muscle, and at the differentiation stage of muscle satellite cells. Overexpression and interference of miR-188-5p showed that miR-188-5p inhibited the proliferation and promoted the differentiation of goat muscle satellite cells. Target gene prediction and dual luciferase assays showed that miR-188-5p could target the 3'untranslated region of the calcium/calmodulin dependent protein kinase II beta (CAMK2B) gene and inhibit luciferase activity. Further functional studies revealed that CAMK2B promoted the proliferation and inhibited the differentiation of goat muscle satellite cells, whereas si-CAMK2B restored the function of miR-188-5p inhibitor. Conclusion: These results suggest that miR-188-5p inhibits the proliferation and promotes the differentiation of goat muscle satellite cells by targeting CAMK2B. This study will provide a theoretical reference for future studies on the molecular mechanisms of skeletal muscle development in goats.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼