RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia

        van Panhuis, Willem G.,Choisy, Marc,Xiong, Xin,Chok, Nian Shong,Akarasewi, Pasakorn,Iamsirithaworn, Sopon,Lam, Sai K.,Chong, Chee K.,Lam, Fook C.,Phommasak, Bounlay,Vongphrachanh, Phengta,Bouaphanh, K National Academy of Sciences 2015 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.112 No.42

        <P><B>Significance</B></P><P>Persons living in the tropics and subtropics are at risk for dengue fever and dengue hemorrhagic fever, and large epidemics occur unexpectedly that can overburden healthcare systems. The spatial and temporal dynamics of dengue transmission are poorly understood, limiting disease control efforts. We compiled a large-scale dataset and analyzed continental-scale patterns of dengue in Southeast Asia. Our analysis shows that periods of elevated temperatures can drive the occurrence of synchronous dengue epidemics across the region. This multicountry collaborative study improved insight that may lead to improved prediction of dengue transmission patterns and more effective disease surveillance and control efforts.</P><P>Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼10<SUP>7</SUP> km<SUP>2</SUP>. We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997–1998, which was followed by a period of extremely low incidence in 2001–2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997–1998 and the strongest El NiÉééÉééééño episode of the century. Multiannual dengue cycles (2–5 y) were highly coherent with the Oceanic NiÉééÉééééñño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼