RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Treatment of Industrial Wastewater with High Concentration of Hydrocarbons Using Membrane Reactors

        Bienati, B.,Bottino, A.,Comite, A.,Ferrari, F.,Firpo, R.,Capannelli, G 한국막학회 2007 멤브레인 Vol.17 No.2

        The application of membrane bioreactors for the depuration of wastewater coming from the washing of mineral oil storage tanks is described. Microfiltration hollow-fibre membranes were used in the submerged configuration. Filtration tests were carried out with a biomass concentration of about 15 g/L in order to assess the critical flux of the hollow fibre membrane used. Then particular care was taken in carrying out the performance runs in the sub-critical flux region. The reactor performance was very high, with removal efficiencies ranging between 93% and 97% also when the concentration of hydrocarbon was very high. Some kinetic parameters for the COD and the hydrocarbon removal were estimated.

      • Current status of islet xenotransplantation

        Park, C.G.,Bottino, R.,Hawthorne, W.J. Surgical Associates Ltd 2015 International journal of surgery Vol.23 No.2

        Cell therapy for Type 1 diabetes (T1D) utilizing islet cell transplantation can successfully restore endogenous insulin production in affected patients. Islet cell engraftment and survival are conditional on the use of efficacious anti-rejection therapies and on the availability of healthy donor cells. The scarcity of healthy human donor pancreata is a limiting factor in providing sufficient tissue to meet the demand for islet transplantation worldwide. A potential alternative to the use of cadaveric human donor pancreases is the use of animal sourced islets. Pancreatic islets obtained from pigs have emerged as an alternative to human tissues due to their great availability, physiological similarities to human islets, including the time-tested use of porcine insulin in diabetic patients and the ability to genetically modify the donor source. The evolution of refined, efficacious immunosuppressive therapies with reduced toxicity, improvements in donor management and genetic manipulation of the donor have all contributed to facilitate long-term function in pre-clinical models of pig islet grafts in non-human primates. As clinical consideration for this option is growing, and trials involving the use of porcine islets have begun, more compelling experimental data suggest that the use of pig islets may soon become a viable, safe, effective and readily available treatment for insulin deficiency in T1D patients.

      • KCI등재

        Treatment of Industrial Wastewater with High Concentration of Hydrocarbons Using Membrane Reactors

        G Capannclli,B. Bienati,A. Bottino,A. Comite,F. Ferrari,R. Firpo 한국막학회 2007 멤브레인 Vol.17 No.2

        The application of membrane bioreactors for the depuration of wastewater coming from the washing of mineral oil storage tanks is described. Microfiltration hollow-fibre membranes were used in the submerged configuration. Filtration tests were carried out with a biomass concentration of about 15 g/L in order to assess the critical flux of the hollow fibre membrane used. Then particular care was taken in carrying out the performance runs in the sub-critical flux region. The reactor performance was very high, with removal efficiencies ranging between 93% and 97% also when the concentration of hydrocarbon was very high. Some kinetic parameters for the COD and the hydrocarbon removal were estimated.

      • SCIESCOPUSKCI등재

        Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

        Tribst, Joao Paulo Mendes,Dal Piva, Amanda Maria de Oliveira,Borges, Alexandre Luiz Souto,Rodrigues, Vinicius Aneas,Bottino, Marco Antonio,Kleverlaan, Cornelis Johannes The Korean Academy of Prosthodonitics 2020 The Journal of Advanced Prosthodontics Vol.12 No.2

        PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

      • KCI등재

        Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

        Eman Z. Al-Shehri,Afnan O. Al-Zain,Alaa H. Sabrah,Sarah S. Al-Angari,Laila Al Dehailan,George J. Eckert,Mutlu Özcan,Jeffrey A. Platt,Marco C. Bottino 대한치과보존학회 2017 Restorative Dentistry & Endodontics Vol.42 No.3

        Objectives: To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide (Al2O3) particles at different pressures. Materials and Methods: Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar), and each group was further divided into 2 groups depending on aging parameters (n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and χ2 tests (α = 0.05). Results: The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05). The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions: CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used.

      • KCI등재

        Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses

        Laura Viviana Calvache Arcila,Nathália de Carvalho Ramos,Tiago Moreira Bastos Campos,Kiara Serafini Dapieve,Luiz Felipe Valandro,Renata Marques de Melo,Marco Antonio Bottino 대한치과보철학회 2021 The Journal of Advanced Prosthodontics Vol.13 No.6

        PURPOSE. To characterize the microstructure of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength. MATERIALS AND METHODS. Disc-shaped specimens were obtained from 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST) and 5Y-PSZ (Vita YZ XT), following the ISO 6872/2015 guidelines for BFS testing (final dimensions of 12 mm in diameter, 0.7 and 1.2 ± 0.1 mm in thicknesses). Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed, and mechanical properties were assessed by Vickers hardness, IFR, quasi-static BFS and fatigue tests. RESULTS. All ceramics showed similar chemical compositions, but mainly differed in the amount of yttria, which was higher as the amount of cubic phase in the diffractogram (5Y-PSZ > 4Y-PSZ > 3Y-TZP). The 4Y- and 5Y-PSZ specimens showed surface defects under SEM, while 3Y-TZP exhibited greater grain uniformity on the surface. 5Y-PSZ and 3Y-TZP presented the highest hardness values, while 3Y-TZP was higher than 4Y- and 5Y-PSZ with regard to the IFR. The 5Y-PSZ specimen (0.7 and 1.2 mm) showed the worst mechanical performance (fatigue BFS and cycles until failure), while 3Y-TZP and 4Y-PSZ presented statistically similar values, higher than 5Y-PSZ for both thicknesses (0.7 and 1.2 mm). Moreover, 3Y-TZP showed the highest (1.2 mm group) and the lowest (0.7 mm group) degradation percentage, and 5Y-PSZ had higher strength degradation than 4Y-PSZ group. CONCLUSION. Despite the microstructural differences, 4Y-PSZ and 3Y-TZP had similar fatigue behavior regardless of thickness. 5Y-PSZ had the lowest mechanical performance.

      • KCI등재

        Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

        Al-Shehri, Eman Z.,Al-Zain, Afnan O.,Sabrah, Alaa H.,Al-Angari, Sarah S.,Dehailan, Laila Al,Eckert, George J.,Ozcan, Mutlu,Platt, Jeffrey A.,Bottino, Marco C. The Korean Academy of Conservative Dentistry 2017 Restorative Dentistry & Endodontics Vol.42 No.3

        Objectives: To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide ($Al_2O_3$) particles at different pressures. Materials and Methods: Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar), and each group was further divided into 2 groups depending on aging parameters (n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and ${\chi}^2$ tests (${\alpha}=0.05$). Results: The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05). The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions: CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼