RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Refined composite multiscale fuzzy entropy: Localized defect detection of rolling element bearing

        Yongjian Li,Bingrong Miao,Weihua Zhang,Peng Chen,Jihua Liu,Xiaoliang Jiang 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.1

        We proposed an appealing method based on refined composite multiscale fuzzy entropy (RCMFE), infinite feature selection (Inf-FS) algorithm, and support vector machine (SVM) for implementing localized defect detection to keep the downtime and extended damage caused by incipient failure of bearing at a minimum. As a useful approach, multiscale fuzzy entropy (MFE) was utilized to measure the complexity and dynamic changes of signals. However, an inaccurate entropy value would be yielded with the increase of scale factor. Here, as an improvement version of MFE, the RCMFE was proposed to address the shortcomings in the case of short time series. For this novel method, we conducted a full investigation of the effects and robustness by comparing the proposed method with two other entropybased approaches using synthetic signals and real data. Results indicate that the proposed algorithm outperforms the other approaches in terms of reliability and stability. The RCMFE values of bearing signals from one healthy condition and seven fault states are calculated as diagnostic information. Moreover, an intelligent fault identification method was constructed by combining the Inf-FS algorithm and SVM classifier. Experimental results show the usefulness of the proposed strategy.

      • KCI등재

        A reduced time-varying model for a long beam on elastic foundation under moving loads

        Guiming Mei,Caijin Yang,Shulin Liang,Jiangwen Wang,Dong Zou,Weihua Zhang,Yunshi Zhao,Zhong Huang,Shuqi Song,Mengying Tan,Yao Cheng,Bingrong Miao 대한기계학회 2018 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.32 No.9

        Dynamics of a long beam on the elastic foundation subjected to moving loads is studied in the present paper. The sliding window technique is used to dynamically truncate the long beam and a reduced time-varying beam system is obtained. The Hamilton’s principle is employed to establish the equations of motion of the reduced system. The variable separation method is adopted to solve dynamical responses of the reduced system. Examples of a long simply supported Timoshenko beam on the nonlinear foundation subjected to a single moving load and multiple loads are included. Numerical results of the reduced model compared with the ones obtained from the moving element model adapted in literature are carried out to show the validity and the good efficiency of the method proposed in the present paper.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼