RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        ACTIVE FAULT-TOLERANT CONTROL OF INDUCTION MOTOR DRIVES IN EV AND HEV AGAINST SENSOR FAILURES USING A FUZZY DECISION SYSTEM

        Benbouzid, M.E.H.,Diallo, D.,Zeraoulia, M.,Zidani, F. The Korean Society of Automotive Engineers 2006 International journal of automotive technology Vol.7 No.6

        This paper describes an active fault-tolerant control system for an induction motor drive that propels an Electrical Vehicle(EV) or a Hybrid one(HEV). The proposed system adaptively reorganizes itself in the event of sensor loss or sensor recovery to sustain the best control performance given the complement of remaining sensors. Moreover, the developed system takes into account the controller transition smoothness in terms of speed and torque transients. In this paper which is the sequel of (Diallo et al., 2004), we propose to introduce more advanced and intelligent control techniques to improve the global performance of the fault-tolerant drive for automotive applications(e.g. EVs or HEVs). In fact, two control techniques are chosen to illustrate the consistency of the proposed approach: sliding mode for encoder-based control; and fuzzy logics for sensorless control. Moreover, the system control reorganization is now managed by a fuzzy decision system to improve the transitions smoothness. Simulations tests, in terms of speed and torque responses, have been carried out on a 4-kW induction motor drive to evaluate the consistency and the performance of the proposed fault-tolerant control approach.

      • KCI등재

        ACTIVE FAULT-TOLERANT CONTROL OF INDUCTION MOTOR DRIVES IN EV AND HEV AGAINST SENSOR FAILURES USING A FUZZY DECISION SYSTEM

        M. E. H. BENBOUZID,D. DIALLO,M. ZERAOULIA,F. ZIDANI 한국자동차공학회 2006 International journal of automotive technology Vol.7 No.6

        This paper describes an active fault-tolerant control system for an induction motor drive that propels an Electrical Vehicle (EV) or a Hybrid one (HEV). The proposed system adaptively reorganizes itself in the event of sensor loss or sensor recovery to sustain the best control performance given the complement of remaining sensors. Moreover, the developed system takes into account the controller transition smoothness in terms of speed and torque transients. In this paper which is the sequel of (Diallo et al., 2004), we propose to introduce more advanced and intelligent control techniques to improve the global performance of the fault-tolerant drive for automotive applications (e.g. EVs or HEVs). In fact, two control techniques are chosen to illustrate the consistency of the proposed approach: sliding mode for encoder-based control; and fuzzy logics for sensorless control. Moreover, the system control reorganization is now managed by a fuzzy decision system to improve the transitions smoothness. Simulations tests, in terms of speed and torque responses, have been carried out on a 4㎾ induction motor drive to evaluate the consistency and the performance of the proposed fault-tolerant control approach.

      • SCIESCOPUSKCI등재

        Problems of Stator Flux Estimation in DTC of PMSM Drives

        Kadjoudj, M.,Golea, N.,Benbouzid, M.E.H The Korean Institute of Electrical Engineers 2007 Journal of Electrical Engineering & Technology Vol.2 No.4

        The DTC of voltage source inverter-fed PMSMs is based on hysteresis controllers of torque and flux. It has several advantages, namely, elimination of the mandatory rotor position sensor, less computation time, and rapid torque response. In addition, the stator resistance is the only parameter, which should be known, and no reference frame transformation is required. The DTC theory has achieved great success in the control of induction motors. However, for the control of PMSM drives proposed a few years ago, there are many basic theoretical problems that must be clarified. This paper describes an investigation into the effect of the zero voltage space vectors in the DTC system and points out that if using it rationally, not only can the DTC of the PMSM drive be driven successfully, but torque and flux ripples are reduced and overall performance of the system is improved. The implementation of DTC in PMSM drives is described and the switching tables specific for an interior PMSM are derived. The conventional eight voltage-vector switching table, which is namely used in the DTC of induction motors does not seem to regulate the torque and stator flux in a PMSM well when the motor operates at low speed. Modelling and simulation studies have both revealed that a six voltage-vector switching table is more appropriate for PMSM drives at low speed. In addition, the sources of difficulties, namely, the error in the detection of the initial rotor position, the variation of stator resistance, and the offsets in measurements are analysed and discussed.

      • KCI등재

        Problems of Stator Flux Estimation in DTC of PMSM Drives

        M. Kadjoudj,N. Golea,M.E.H Benbouzid 대한전기학회 2007 Journal of Electrical Engineering & Technology Vol.2 No.4

        The DTC of voltage source inverter-fed PMSMs is based on hysteresis controllers of torque and flux. It has several advantages, namely, elimination of the mandatory rotor position sensor, less computation time, and rapid torque response. In addition, the stator resistance is the only parameter, which should be known, and no reference frame transformation is required. The DTC theory has achieved great success in the control of induction motors. However, for the control of PMSM drives proposed a few years ago, there are many basic theoretical problems that must be clarified. This paper describes an investigation into the effect of the zero voltage space vectors in the DTC system and points out that if using it rationally, not only can the DTC of the PMSM drive be driven successfully, but torque and flux ripples are reduced and overall performance of the system is improved. The implementation of DTC in PMSM drives is described and the switching tables specific for an interior PMSM are derived. The conventional eight voltage-vector switching table, which is namely used in the DTC of induction motors does not seem to regulate the torque and stator flux in a PMSM well when the motor operates at low speed. Modelling and simulation studies have both revealed that a six voltage-vector switching table is more appropriate for PMSM drives at low speed. In addition, the sources of difficulties, namely, the error in the detection of the initial rotor position, the variation of stator resistance, and the offsets in measurements are analysed and discussed.

      • SCIESCOPUSKCI등재

        Economic Power Dispatch with Discontinuous Fuel Cost Functions using Improved Parallel PSO

        Mahdad, Belkacem,Bouktir, T.,Srairi, K.,Benbouzid, M.EL. The Korean Institute of Electrical Engineers 2010 Journal of Electrical Engineering & Technology Vol.5 No.1

        This paper presents an improved parallel particle swarm optimization approach (IPPSO) based decomposed network for economic power dispatch with discontinuous fuel cost functions. The range of partial power demand corresponding to the partial output powers near the global optimal solution is determined by a flexible decomposed network strategy and then the final optimal solution is obtained by parallel Particle Swarm Optimization. The proposed approach tested on 6 generating units with smooth cost function, and to 26-bus (6 generating units) with consideration of prohibited zone effect, the simulation results compared with recent global optimization methods (Bee-OPF, GA, MTS, SA, PSO). From the different case studies, it is observed that the proposed approach provides qualitative solution with less computational time compared to various methods available in the literature survey.

      • SCIESCOPUSKCI등재

        Optimal Power Flow with Discontinous Fuel Cost Functions Using Decomposed GA Coordinated with Shunt FACTS

        Mahdad, Belkacem,Srairi, K.,Bouktir, T.,Benbouzid, M.EL. The Korean Institute of Electrical Engineers 2009 Journal of Electrical Engineering & Technology Vol.4 No.4

        This paper presents efficient parallel genetic algorithm (EPGA) based decomposed network for optimal power flow with various kinds of objective functions such as those including prohibited zones, multiple fuels, and multiple areas. Two coordinated sub problems are proposed: the first sub problem is an active power dispatch (APD) based parallel GA; a global database generated containing the best partitioned network: the second subproblem is an optimal setting of control variables such as generators voltages, tap position of tap changing transformers, and the dynamic reactive power of SVC Controllers installed at a critical buses. The proposed approach tested on IEEE 6-bus, IEEE 30-bus and to 15 generating units and compared with global optimization methods (GA, DE, FGA, PSO, MDE, ICA-PSO). The results show that the proposed approach can converge to the near solution and obtain a competitive solution with a reasonable time.

      • KCI등재

        Economic Power Dispatch with Discontinuous Fuel Cost Functions using Improved Parallel PSO

        Belkacem Mahdad,Tarek Bouktir,Kamel Srair,Mohamed El Hachemi Benbouzid 대한전기학회 2010 Journal of Electrical Engineering & Technology Vol.5 No.1

        This paper presents an improved parallel particle swarm optimization approach (IPPSO) based decomposed network for economic power dispatch with discontinuous fuel cost functions. The range of partial power demand corresponding to the partial output powers near the global optimal solution is determined by a flexible decomposed network strategy and then the final optimal solution is obtained by parallel Particle Swarm Optimization. The proposed approach tested on 6 generating units with smooth cost function, and to 26-bus (6 generating units) with consideration of prohibited zone effect, the simulation results compared with recent global optimization methods (Bee-OPF, GA, MTS, SA, PSO). From the different case studies, it is observed that the proposed approach provides qualitative solution with less computational time compared to various methods available in the literature survey.

      • KCI등재

        Optimal Power Flow with Discontinous Fuel Cost Functions Using Decomposed GA Coordinated with Shunt FACTS

        Belkacem Mahdad,Kamel Srairi,Tarek Bouktir,Mohamed El Hachemi Benbouzid 대한전기학회 2009 Journal of Electrical Engineering & Technology Vol.4 No.4

        This paper presents efficient parallel genetic algorithm (EPGA) based decomposed network for optimal power flow with various kinds of objective functions such as those including prohibited zones, multiple fuels, and multiple areas. Two coordinated sub problems are proposed: the first sub problem is an active power dispatch (APD) based parallel GA; a global database generated containing the best partitioned network: the second subproblem is an optimal setting of control variables such as generators voltages, tap position of tap changing transformers, and the dynamic reactive power of SVC Controllers installed at a critical buses. The proposed approach tested on IEEE 6-bus, IEEE 30-bus and to 15 generating units and compared with global optimization methods (GA, DE, FGA, PSO, MDE, ICA-PSO). The results show that the proposed approach can converge to the near solution and obtain a competitive solution with a reasonable time.

      • KCI등재

        Model predictive current control of asymmetrical hybrid cascaded multilevel inverter

        Jingang Han,Pinxuan Zhao,Gang Yao,Hao Chen,Yide Wang,Mohamed Benbouzid,Tianhao Tang 전력전자학회 2022 JOURNAL OF POWER ELECTRONICS Vol.22 No.4

        Asymmetrical hybrid cascaded (AHC) multilevel inverters (MLIs) adapt in medium- and high-power applications due to their good output voltage performance and numerous voltage levels. Research on reliable control schemes for AHC MLIs is necessary due to complicated practical conditions. This study presents a finite control set–model predictive control (FCSMPC) algorithm for a three-phase AHC MLI. The topology has few switching component requirements and generates many voltage levels through changes in the DC power supply ratio. FCS-MPC is designed for AHC MLIs to achieve stable and reliable control. Delay compensation and computational burden relief are also realized. Simulation and experiment results confirm the good performance of the proposed algorithm for AHC MLIs under steady-state and dynamic processes.

      • KCI등재

        Dependence of Structural and Optical Properties of ZnO Thin Films Grown by Sol–Gel Spin-Coating Technique on Solution Molarity

        Slimane Chala,Madani Bdirina,Mourad Elbar,Yassine Naoui,Yazid Benbouzid,Taki Eddine Taouririt,Mohamed Labed,Rami Boumaraf,Abdel Fodhil Bouhdjar,Nouredine Sengouga,Fahrettin Yakuphanoğlu,Saâd Rahmane 한국전기전자재료학회 2022 Transactions on Electrical and Electronic Material Vol.23 No.5

        Zinc oxide (ZnO) thin films were deposited on glass substrates by using sol–gel spin coating technique. Zinc acetate dihydrate and 2-methoxyethanol were used as precursor with different molar concentrations, 0.2 M, 0.3 M and 0.6 M. The effect of precursor concentration on the structural and optical properties, transmission (T), refl ection (R), optical bandgap (Eg), Urbach energy (E U ), refractive index (n), extinction coefficient (k), single-oscillator energy (E 0 ), dispersion energy (E d ), moments M −1 and M −3 , dielectric constant (ε) and optical conductivity (σ), of the ZnO thin films was studied and investigated. Although, the transmittance, slightly, decreased and the reflectance increased, as the molar concentration increased, the measurements showed that all samples have high transparency and low reflectivity in the visible range which make them suitable for solar cells applications. It is also found that, as the molarity increased, the ZnO thin films exhibited lower Eg and E U and higher Ed, M −1 and M −3 .

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼