RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Modeling and simulation of large crowd evacuation in hazard-impacted environments

        Datta, Songjukta,Behzadan, Amir H. Techno-Press 2019 Advances in computational design Vol.4 No.2

        Every year, many people are severely injured or lose their lives in accidents such as fire, chemical spill, public pandemonium, school shooting, and workplace violence. Research indicates that the fate of people in an emergency situation involving one or more hazards depends not only on the design of the space (e.g., residential building, industrial facility, shopping mall, sports stadium, school, concert hall) in which the incident occurs, but also on a host of other factors including but not limited to (a) occupants' characteristics, (b) level of familiarity with and cognition of the surroundings, and (c) effectiveness of hazard intervention systems. In this paper, we present EVAQ, a simulation framework for modeling large crowd evacuation by taking into account occupants' behaviors and interactions during an emergency. In particular, human's personal (i.e., age, gender, disability) and interpersonal (i.e., group behavior and interactions) attributes are parameterized in a hazard-impacted environment. In addition, different hazard types (e.g., fire, lone wolf attacker) and propagation patterns, as well as intervention schemes (simulating building repellent systems, firefighters, law enforcement) are modeled. Next, the application of EVAQ to crowd egress planning in an airport terminal under human attack, and a shopping mall in fire emergency are presented and results are discussed. Finally, a validation test is performed using real world data from a past building fire incident to assess the reliability and integrity of EVAQ in comparison with existing evacuation modeling tools.

      • SCIESCOPUSKCI등재

        Effect of Two Separate Fibre Feed Systems in Rotor Spinning on Yarn Properties

        Hajilari, M.,Eskandarnejad, S.,Behzadan, H.,Moghadam, M. Bameni The Korean Fiber Society 2007 Fibers and polymers Vol.8 No.5

        Opening of the fibres in all industrial rotor spinning units is being done by an opening roller, which intakes the fibres from one feed point. Increasing number of feed rollers from one to two may improve fibre opening on the opening roller by gradual loading of the opening roller, which may improve fibre orientation in the final yarn and yarn properties. In this research a modified SE-8 rotor spinning unit of Suessen was used in which two separate fibre feed systems were employed. Raw material used was 38 mm, 1.7 den viscose fibre, to spin a 40 tex yarn. Yarn properties produced with this unit, were compared with that of the original yarn. Yarn properties tested were tenacity, extension, work of rupture, mass irregularity and imperfections, abrasion resistance and hairiness, which were measured on Shirley (SDL) and keisokki yarn testing machines. Test results were analyzed by ANOVA for any difference between the means, and Tukey and Duncan for classification and ranking of the yarn properties. Test results showed that, tenacity, extension and work of rupture of the modified yarn increased in comparison to the original yarn. Its mass irregularity, number of thin places and neps, and hairiness decreased. Number of thick places and yarn abrasion didn#t change. According to the test results, it was concluded that increasing the number of feed rollers on the opening roller from one to two has improved yarn properties.

      • Risk-Incorporated Trajectory Prediction to Prevent Contact Collisions on Construction Sites

        Rashid, Khandakar M.,Datta, Songjukta,Behzadan, Amir H.,Hasan, Raiful Korea Institute of Construction Engineering and Ma 2018 Journal of construction engineering and project ma Vol.8 No.1

        Many construction projects involve a plethora of safety-related problems that can cause loss of productivity, diminished revenue, time overruns, and legal challenges. Incorporating data collection and analytics methods can help overcome the root causes of many such problems. However, in a dynamic construction workplace collecting data from a large number of resources is not a trivial task and can be costly, while many contractors lack the motivation to incorporate technology in their activities. In this research, an Android-based mobile application, Preemptive Construction Site Safety (PCS2) is developed and tested for real-time location tracking, trajectory prediction, and prevention of potential collisions between workers and site hazards. PCS2 uses ubiquitous mobile technology (smartphones) for positional data collection, and a robust trajectory prediction technique that couples hidden Markov model (HMM) with risk-taking behavior modeling. The effectiveness of PCS2 is evaluated in field experiments where impending collisions are predicted and safety alerts are generated with enough lead time for the user. With further improvement in interface design and underlying mathematical models, PCS2 will have practical benefits in large scale multi-agent construction worksites by significantly reducing the likelihood of proximity-related accidents between workers and equipment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼