RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Excellent Laundry Detergent Compatibility and High Dehairing Ability of the Bacillus pumilus CBS Alkaline Proteinase (SAPB)

        Bassem Jaouadi,Semia Ellouz-Chaabouni,Mamdouh Ben Ali,Ezzedine Ben Messaoud,Belgacem Naili,Abdelhafidh Dhouib,Samir Bejar 한국생물공학회 2009 Biotechnology and Bioprocess Engineering Vol.14 No.4

        The newly Tunisian soil-isolated bacterium, producing the alkaline proteinase termed SAPB that was already purified and characterized [1], was assigned as Bacillus pumilus CBS strain on the basis of biochemical properties and 16S rRNA gene sequencing. The maximum protease activity recorded after 24 h of incubation in an optimized medium at 37°C was 6,500 U/mL in shaking flask culture and 25,000 U/mL in fermentor. SAPB showed excellent stability and compatibility in laundry detergent retaining more than 98% of its initial activity after pre-incubation for 1 h at 40°C with Det, followed by OMO (97%), Dinol (94%), and Dixan (93%). Examination of various stained cloth pieces exhibited a remarkable efficiency in the removal of blood and chocolate stains. More interestingly, SAPB demonstrated powerful dehairing capabilities of hair removal from skin with minimal damage on the collagen and a nearly complete feather-degradation. Likewise, Bacillus pumilus CBS effectively degraded feather-meal (98.5%), chicken feather (92%), goat hair (80%), and bovine hair (68%) whereas sheep wool under went less degradation. Keratin-degradation resulted in sulfhdryl group formation (0.95~3.91 μM).

      • KCI등재

        Bacillus subtilis Bacteriocin Bac 14B with a Broad Inhibitory Spectrum: Purification, Amino Acid Sequence Analysis, and Physicochemical Characterization

        Ines Hammami,Bassem Jaouadi,Abir Ben Bacha,Ahmed Rebai,Samir Bejar,Xavier Nesme,Ali Rhouma 한국생물공학회 2012 Biotechnology and Bioprocess Engineering Vol.17 No.1

        Bacillus subtilis strain 14B was used to produce a novel antimicrobial peptide (bacteriocin) called Bac 14B. Pure bacteriocin was obtained after heat and acidic treatments (80°C and pH 4), precipitation by ammonium sulfate, and chromatography on Sephadex G-50 and Mono Q Sepharose columns. Based on MALDI-TOF mass spectrometry analysis, purified Bac 14B is a monomer protein with a molecular mass of 20110.13 Da. N-terminal sequencing allowed for the straightforward identification of its first 12 residues, which were of a pure bacteriocin. It also revealed that this bacteriocin contained a unique sequence, namely M-L-K-A-N-L-Q-N-P-L-N-A, suggesting the identification of a novel compound. Bac 14B was stable for 1 h at temperatures up to 80°C and pH of 4 ~ 8. It also proved sensitive to various proteases, which demonstrated its protein nature. Bac 14B displayed a bacteriolytical mode of action and a broad range of inhibitory spectra toward Gram-positive and -negative pathogens. Interestingly,based on conventional agronomic seed vigor parameters,the application of Bac 14B (500 activity units/mL)to various crops revealed that this bacteriocin was a potent exogenous enhancer of growth that stimulated the seedling vigor of tomatoes and muskmelons. Compared to those of the control, the germination percentage, shoot weight,shoot height, and root length were all significantly enhanced in Bac 14B-treated plant seeds. Bac 14B also exhibited effective disinfectant properties against a wide range of seedborne diseases and significant effects on the control of damping off diseases, particularly at the pregermination stage. It also proved to be effective against root rot diseases caused by Alternaria solani and other bacterial seedborne pathogens such as wilt diseases. The findings indicate that Bac 14B is the first B. subtilisproduced bacteriocin ever reported to exhibit such promising biological properties. Bacillus subtilis strain 14B was used to produce a novel antimicrobial peptide (bacteriocin) called Bac 14B. Pure bacteriocin was obtained after heat and acidic treatments (80°C and pH 4), precipitation by ammonium sulfate, and chromatography on Sephadex G-50 and Mono Q Sepharose columns. Based on MALDI-TOF mass spectrometry analysis, purified Bac 14B is a monomer protein with a molecular mass of 20110.13 Da. N-terminal sequencing allowed for the straightforward identification of its first 12 residues, which were of a pure bacteriocin. It also revealed that this bacteriocin contained a unique sequence, namely M-L-K-A-N-L-Q-N-P-L-N-A, suggesting the identification of a novel compound. Bac 14B was stable for 1 h at temperatures up to 80°C and pH of 4 ~ 8. It also proved sensitive to various proteases, which demonstrated its protein nature. Bac 14B displayed a bacteriolytical mode of action and a broad range of inhibitory spectra toward Gram-positive and -negative pathogens. Interestingly,based on conventional agronomic seed vigor parameters,the application of Bac 14B (500 activity units/mL)to various crops revealed that this bacteriocin was a potent exogenous enhancer of growth that stimulated the seedling vigor of tomatoes and muskmelons. Compared to those of the control, the germination percentage, shoot weight,shoot height, and root length were all significantly enhanced in Bac 14B-treated plant seeds. Bac 14B also exhibited effective disinfectant properties against a wide range of seedborne diseases and significant effects on the control of damping off diseases, particularly at the pregermination stage. It also proved to be effective against root rot diseases caused by Alternaria solani and other bacterial seedborne pathogens such as wilt diseases. The findings indicate that Bac 14B is the first B. subtilisproduced bacteriocin ever reported to exhibit such promising biological properties.

      • KCI등재

        Modulatory Effect of Fenugreek Saponins on the Activities of Intestinal and Hepatic Disaccharidase and Glycogen and Liver Function of Diabetic Rats

        Khaled Hamden,Abdelfattah Elfeki,Bassem Jaouadi,Samir Bejar,Tahia Salami,Serge Carreau 한국생물공학회 2010 Biotechnology and Bioprocess Engineering Vol.15 No.5

        Diabetes mellitus is a serious health concern throughout the world and is often associated with a variety of bodily disorders such as liver toxicity and dysfunction. This study elucidates the effect of fenugreek saponin administration on disaccharidase and glycogen activities in the intestine and liver of surviving diabetic rats. It also evaluates the effect of saponin feeding using a number of liver toxicity indices, namely stress oxidant, liver dysfunction markers and metabolism. Our findings indicate that the fenugreek saponin fraction significantly modulated the disaccharidase and glycogen enzyme activities in the intestine and liver of rats, increased the hepatic glycogen content, suppressed the increase of blood glucose level and improved results in the oral glucose tolerance test (OGTT). The fenugreek saponin extract also efficiently protected the hepatic function, which was evidenced by the significant increases of superoxide dismutase (SOD), catalase (CAT),gluthation peroxidase (GPX), aspartate transaminase (AST),alanine transaminase (ALT) and lactate deshydrogenase (LDH) enzyme activities. Fenugreek saponin also induced a notable delay in the absorption of LDL-cholesterol and triglycerides and a remarkable increase in levels of HDLcholesterol. A histological analysis of the hepatic tissues further established the positive effect of fenugreek saponin. Overall, the findings of the current study indicate that fenugreek saponins exhibit attractive properties and can be considered as promising candidates for future application as therapeutic agents in biotechnological and bioprocessbased technologies, particularly those related to the development of anti-diabetic, hepatoprotective and hypolipidemic drugs.

      • KCI등재

        Inhibitory Effect of Fenugreek Galactomannan on Digestive Enzymes Related to Diabetes, Hyperlipidemia, and Liver-kidney Dysfunctions

        Khaled Hamden,Abdelfattah Elfeki,Bassem Jaouadi,Samir Bejar,Serge Carreau 한국생물공학회 2010 Biotechnology and Bioprocess Engineering Vol.15 No.3

        The present study was undertaken to investigate the effect of fenugreek galactomannan on intestinal glucose uptake in surviving diabetic rats. It explored their potential action with respect to lowering maltase, lactase,and sucrase activities in the small intestine of galactomannan-treated diabetic group compared to the diabetic control group. The findings indicate that the increase of blood glucose levels was significantly suppressed in the galactomannan-treated group than those in the diabetic rats. Moreover, the galactomannan isolated from fenugreek exhibited a prominent selective inhibitory effect against intestinal lipase activity. It was found to significantly delay the absorption of LDL-cholesterol and triglycerides and the increase in HDL-cholesterol. In addition, fenugreek galactomannan efficiently protect the hepatic function observed by the considerable decrease of aspartate and alanine transaminases (AST and ALT) and lactate deshydrogenase (LDH) contents in the serum of diabetic rats. The beneficial effects of fenugreek galactomannan were also evidenc-ed by their capacity to inhibit diabetes-induced kidney injury through lowering the urea and creatinine content in plasma. Overall, the conclusion of the present study indicate that fenugreek galactomannan displays a number of promising properties and attributes for future applications as therapeutic agents in biotechnological and bioprocess-based technologies, particularly those interested in the development of anti-diabetic and hypolipidemic drugs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼