RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Identification of Biomarker for Determining Genotypic Potential of Nitrogen-Use-Efficiency and Optimization of the Nitrogen Inputs in Crop Plants

        Kumar, Anil,Gupta, Nidhi,Gupta, Atul Kumar,Gaur, Vikram Singh 한국작물학회 2009 Journal of crop science and biotechnology Vol.12 No.4

        Worldwide, the nitrogen use efficiency (NUE) for crop plants is of great concern. The burgeoning world population needs crop genotypes that respond to higher nitrogen and show a direct relationship to yield with use of nitrogen inputs, i.e. high nitrogen-responsive genotypes. However, for fulfilling the high global demand of organic produce, it requires the low nitrogen responsive genotypes with greater NUE and grain yields. The lack of knowledge about precise regulatory mechanisms to explain NUE in crop plants hampers the goal of agricultural productivity. Understanding the molecular basis of NUE will enable to provide handle for crop improvement through biotechnological means. With the advent of modern genomics and proteomics approaches such as subtractive hybridization, differential display, and microarray techniques are revolutionizing to identify the candidate genes which play a pivotal role in the regulation of NUE. Beside it, quantitative real-time polymerase chain reaction technology is also being used to establish marker-trait association for NUE. The identification of potential candidate genes/proteins in the regulation of NUE will serve as biomarker(s) for screening genotypes for their nitrogen responsiveness for optimization of nitrogen input in agriculture. This paper describes the molecular basis of NUE with respect to nitrogen metabolism and its intimate relationship with carbon metabolism, use of molecular-physiological-genetics approaches for understanding the role of various genes/proteins, and their validation to use as biomarker(s) for determining genotypic potential for NUE. Since NUE in plants is a complex trait which not only involves the primary process of nitrogen uptake and assimilatory pathways but also a series of events, including metabolite partitioning, secondary remobilization, C-N interactions, as well as molecular signalling pathways and regulatory control outside the metabolic cascades. Therefore, identification of novel nitrogen responsive genes and their cis- and trans-acting gene elements is essential. Thus, fishing out a single gene, biomarker or a master regulator controlling complex trait of NUE could serve as an appropriate strategy for nitrogen management in agriculture.

      • KCI등재후보

        Identification of Biomarker for Determining Genotypic Potential of Nitrogen-Use-Efficiency and Optimization of the Nitrogen Inputs in Crop Plants

        Anil Kumar,Nidhi Gupta,Atul Kumar Gupta,Vikram Singh Gaur 한국작물학회 2009 Journal of crop science and biotechnology Vol.12 No.4

        Worldwide, the nitrogen use efficiency (NUE) for crop plants is of great concern. The burgeoning world population needs crop genotypes that respond to higher nitrogen and show a direct relationship to yield with use of nitrogen inputs, i.e. high nitrogenresponsive genotypes. However, for fulfilling the high global demand of organic produce, it requires the low nitrogen responsive genotypes with greater NUE and grain yields. The lack of knowledge about precise regulatory mechanisms to explain NUE in crop plants hampers the goal of agricultural productivity. Understanding the molecular basis of NUE will enable to provide handle for crop improvement through biotechnological means. With the advent of modern genomics and proteomics approaches such as subtractive hybridization, differential display, and microarray techniques are revolutionizing to identify the candidate genes which play a pivotal role in the regulation of NUE. Beside it, quantitative real-time polymerase chain reaction technology is also being used to establish marker-trait association for NUE. The identification of potential candidate genes/proteins in the regulation of NUE will serve as biomarker(s) for screening genotypes for their nitrogen responsiveness for optimization of nitrogen input in agriculture. This paper describes the molecular basis of NUE with respect to nitrogen metabolism and its intimate relationship with carbon metabolism, use of molecular-physiological-genetics approaches for understanding the role of various genes/proteins, and their validation to use as biomarker(s) for determining genotypic potential for NUE. Since NUE in plants is a complex trait which not only involves the primary process of nitrogen uptake and assimilatory pathways but also a series of events, including metabolite partitioning, secondary remobilization, C-N interactions, as well as molecular signalling pathways and regulatory control outside the metabolic cascades. Therefore, identification of novel nitrogen responsive genes and their cis- and trans-acting gene elements is essential. Thus, fishing out a single gene, biomarker or a master regulator controlling complex trait of NUE could serve as an appropriate strategy for nitrogen management in agriculture. Worldwide, the nitrogen use efficiency (NUE) for crop plants is of great concern. The burgeoning world population needs crop genotypes that respond to higher nitrogen and show a direct relationship to yield with use of nitrogen inputs, i.e. high nitrogenresponsive genotypes. However, for fulfilling the high global demand of organic produce, it requires the low nitrogen responsive genotypes with greater NUE and grain yields. The lack of knowledge about precise regulatory mechanisms to explain NUE in crop plants hampers the goal of agricultural productivity. Understanding the molecular basis of NUE will enable to provide handle for crop improvement through biotechnological means. With the advent of modern genomics and proteomics approaches such as subtractive hybridization, differential display, and microarray techniques are revolutionizing to identify the candidate genes which play a pivotal role in the regulation of NUE. Beside it, quantitative real-time polymerase chain reaction technology is also being used to establish marker-trait association for NUE. The identification of potential candidate genes/proteins in the regulation of NUE will serve as biomarker(s) for screening genotypes for their nitrogen responsiveness for optimization of nitrogen input in agriculture. This paper describes the molecular basis of NUE with respect to nitrogen metabolism and its intimate relationship with carbon metabolism, use of molecular-physiological-genetics approaches for understanding the role of various genes/proteins, and their validation to use as biomarker(s) for determining genotypic potential for NUE. Since NUE in plants is a complex trait which not only involves the primary process of nitrogen uptake and assimilatory pathways but also a series of events, including metabolite partitioning, secondary remobilization, C-N interactions, as well as molecular signalling pathways and regulatory control outside the metabolic cascades. Therefore, identification of novel nitrogen responsive genes and their cis- and trans-acting gene elements is essential. Thus, fishing out a single gene, biomarker or a master regulator controlling complex trait of NUE could serve as an appropriate strategy for nitrogen management in agriculture.

      • SCIESCOPUSKCI등재

        Assessment of pregnancy-associated glycoprotein profile in milk for early pregnancy diagnosis in goats

        Singh, Shiva Pratap,Natesan, Ramachandran,Sharma, Nandini,Goel, Anil Kumar,Singh, Manoj Kumar,Kharche, Suresh Dinkar Asian Australasian Association of Animal Productio 2021 Animal Bioscience Vol.34 No.1

        Objective: This study was conducted to assess the level of pregnancy-associated glycoprotein (PAG) in whole and skim milk samples, and its suitability for early pregnancy diagnosis in goats. Methods: A two-step sandwich enzyme-linked immunosorbent assay (ELISA) system for estimation of milk PAG was developed and validated, which employed caprine-PAG specific polyclonal antisera. Whole and skim milk samples (n = 210 each) from fifteen multiparous goats were collected on alternate days from d 10 to d 30, and thereafter weekly till d 51 post-mating. PAG levels in milk samples were estimated by ELISA and the pregnancies were confirmed at d40 post-mating by transrectal ultrasonography (TRUS). Results: The level of PAG in whole and skim milk samples of both pregnant and nonpregnant goats remained below the threshold values until d 24 after mating. Thereafter, PAG concentration in whole and skim milk increased steadily in pregnant goats, whereas it continued below the threshold in non-pregnant does. The PAG profiles in whole and skim milk of pregnant goats were almost similar and exhibited strong positive relationship (r = 0.891; p<0.001). Day 26 post-mating was identified as the first time-point for significantly (p<0.05) higher milk PAG concentration in pregnant goats than to non-pregnant goats. When compared to TRUS examination for pregnancy diagnosis, the accuracy and specificity of PAG ELISA using whole and skim milk samples were 94.5% and 95.4%; and 95.3% and 100%, respectively. The high values of area-under-curve (0.904 [whole milk] and 0.922 [skim milk]), demonstrate outstanding discrimination ability of the milk assays. Among the sampling dates chosen, d 37 post-mating was identified as the best suitable time point for collection of milk samples to detect pregnancy in goats. Conclusion: The PAG concentration in whole and skim milk of goats collected between days 26 and 51 post-breeding can be used for the accurate prediction of pregnancy and may be useful for assisting management decisions in goat flocks.

      • KCI등재

        Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP)

        Anil Kumar D,Sumathi Natarajan,Nabil A M Bin Omar,Preeti Singh,Rohan Bhimani,Surya Satyanarayana Singh 한국독성학회 2018 Toxicological Research Vol.34 No.3

        Neurolathyrism is a neurodegenerative disorder characterized by spastic paraplegia resulting from the excessive consumption of Lathyrus sativus (Grass pea). β-N-Oxalyl-L-α,β-diaminopropionic acid (L-ODAP) is the primary neurotoxic component in this pea. The present study attempted to evaluate the proteome-wide alterations in chick brain 2 hr and 4 hr post L-ODAP treatment. Proteomic analysis of chick brain homogenates revealed several proteins involved in cytoskeletal structure, signaling, cellular metabolism, free radical scavenging, oxidative stress and neurodegenerative disorders were initially up-regulated at 2 hr and later recovered to normal levels by 4 hr. Since L-ODAP mediated neurotoxicity is mainly by excitotoxicity and oxidative stress related dysfunctions, this study further evaluated the role of L-ODAP in apoptosis in vitro using human neuroblastoma cell line, IMR-32. The in vitro studies carried out at 200 μM L-ODAP for 4 hr indicate minimal intracellular ROS generation and alteration of mitochondrial membrane potential though not leading to apoptotic cell death. L-ODAP at low concentrations can be explored as a stimulator of various reactive oxygen species (ROS) mediated cell signaling pathways not detrimental to cells. Insights from our study may provide a platform to explore the beneficial side of LODAP at lower concentrations. This study is of significance especially in view of the Government of India lifting the ban on cultivation of low toxin Lathyrus varieties and consumption of this lentil.

      • Influence of the CYP1A1 T3801C Polymorphism on Tobacco and Alcohol-Associated Head and Neck Cancer Susceptibility in Northeast India

        Singh, Seram Anil,Choudhury, Javed Hussain,Kapfo, Wetetsho,Kundu, Sharbadeb,Dhar, Bishal,Laskar, Shaheen,Das, Raima,Kumar, Manish,Ghosh, Sankar Kumar Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.16

        Background: Tobacco and alcohol contain or may generate carcinogenic compounds related to cancers. CYP1A1 enzymes act upon these carcinogens before elimination from the body. The aim of this study was to investigate whether CYP1A1 T3801C polymorphism modulates the relationship between tobacco and alcohol-associated head and neck cancer (HNC) susceptibility among the northeast Indian population. Materials and Methods: One hundred and seventy histologically confirmed HNC cases and 230 controls were included within the study. The CYP1A1 T3801C polymorphism was determined using PCR-RFLP, and the results were confirmed by DNA sequencing. Logistic regression (LR) and multifactor dimensionality reduction (MDR) approaches were applied for statistical analysis. Results: The CYP1A1 CC genotype was significantly associated with HNC risk (P=0.045). A significantly increased risk of HNC (OR=6.09; P<0.0001) was observed in individuals with combined habits of smoking, alcohol drinking and tobacco-betel quid chewing. Further, gene-environment interactions revealed enhanced risks of HNC among smokers, alcohol drinkers and tobacco-betel quid chewers carrying CYP1A1 TC or CC genotypes. The highest risk of HNC was observed among smokers (OR=7.55; P=0.009) and chewers (OR=10.8; P<0.0001) carrying the CYP1A1 CC genotype. In MDR analysis, the best model for HNC risk was the three-factor model combination of smoking, tobacco-betel quid chewing and the CYP1A1 variant genotype (CVC=99/100; TBA=0.605; P<0.0001); whereas interaction entropy graphs showed synergistic interaction between tobacco habits and CYP1A1. Conclusions: Our results confirm that the CYP1A1 T3801C polymorphism modifies the risk of HNC and further demonstrated importance of gene-environment interaction.

      • KCI등재

        Role of Single Port Rigid Thoracoscopy in Undiagnosed Pleural Effusion

        Anil Kumar,Jagdish Rawat,Parul Mrigpuri,Dev Singh Jangpangi,Abhay Pratap Singh,Ritisha Bhatt 대한결핵및호흡기학회 2024 Tuberculosis and Respiratory Diseases Vol.87 No.2

        Background: In recent years, medical thoracoscopy has been well established to playan important role in undiagnosed pleural effusion; however, this procedure is underutilizeddue to limited availability of the instruments it requires. This study analysed the outcomeof single port rigid thoracoscopy in patients with undiagnosed pleural effusions. Methods: This study retrospectively analysed the outcomes of all patients with undiagnosedpleural effusion presenting to our centre between 2016 to 2020 who underwentsingle port rigid medical thoracoscopy as a diagnostic procedure. Results: In total, 92 patients underwent single port rigid medical thoracoscopy. Themost common presenting symptom was shortness of breath. A majority of the patientshad lymphocytic exudative pleural effusion. The average biopsy sample size was 18mm, and no major complication was reported in any of the patients. Conclusion: Single port rigid thoracoscopy is a safe and well-tolerated procedure thatyields a biopsy of a larger size with high diagnostic yield. Moreover, the low cost of theinstruments required by this procedure makes it particularly suited for use in developingcountries.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼