RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Optimization analysis of the absorption-stabilization process for fluid catalytic cracking unit

        Hussain Muhammad Saddam,Ahmed Ashfaq,Yibin Liu,Amin Muhammad Nadeem,Zahoor Tahir,Saleem Muhammad Afnan,Roh Kosan,Hussain Murid,Abu Bakar Muhammad Saifullah,박영권 한국화학공학회 2023 Korean Journal of Chemical Engineering Vol.40 No.7

        The absorption-stabilization process (ASP), an important part of petroleum refinery used in the end-use products of petroleum (such as stable gasoline, liquid petroleum gas, and dry gas), is energy-intensive and has low product quality. Aspen Plus process simulator was used for the development of the ASP process model. The developed process model was validated with the actual plant data. The validated model was used to optimize to minimize the cost of the ASP. This work shows that the optimization analysis of the ASP can further improve the product quality and reduce thermal energy consumption. In the new process, changing feeding parameters of supplementary absorption oil, stripping tower intermediate reboiler, and feeding position of stabilization tower reduced the C3 contents of dry gas considerably and lowered the C2 and lighter contents of LPG. Additionally, the new process saved 1.32 MW of thermal energy consumption compared with the existing process. The operating cost has been reduced from 10.921 million USD annually to 9.830 million USD per year. Furthermore, the cost-saving effect of this optimization is about 9.99% (1.091 million USD per year).

      • Malware Classification using Dynamic Analysis with Deep Learning

        Asad Amin,Muhammad Nauman Durrani,Nadeem Kafi,Fahad Samad,Abdul Aziz International Journal of Computer ScienceNetwork S 2023 International journal of computer science and netw Vol.23 No.8

        There has been a rapid increase in the creation and alteration of new malware samples which is a huge financial risk for many organizations. There is a huge demand for improvement in classification and detection mechanisms available today, as some of the old strategies like classification using mac learning algorithms were proved to be useful but cannot perform well in the scalable auto feature extraction scenario. To overcome this there must be a mechanism to automatically analyze malware based on the automatic feature extraction process. For this purpose, the dynamic analysis of real malware executable files has been done to extract useful features like API call sequence and opcode sequence. The use of different hashing techniques has been analyzed to further generate images and convert them into image representable form which will allow us to use more advanced classification approaches to classify huge amounts of images using deep learning approaches. The use of deep learning algorithms like convolutional neural networks enables the classification of malware by converting it into images. These images when fed into the CNN after being converted into the grayscale image will perform comparatively well in case of dynamic changes in malware code as image samples will be changed by few pixels when classified based on a greyscale image. In this work, we used VGG-16 architecture of CNN for experimentation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼