RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Depiction of concrete structures with seismic separation under faraway fault earthquakes

        Luo, Liang,Nguyen, Hoang,Alabduljabbar, Hisham,Alaskar, Abdulaziz,Alrshoudi, Fahed,Alyousef, Rayed,Nguyen, Viet-Duc,Dang, Hoang-Minh Techno-Press 2020 Advances in concrete construction Vol.9 No.1

        One of the most suitable methods in structural design is seismic separator. Lead-Rubber Bearing (LRB) is one of the most well-known separation systems which can be used in different types of structures. This system mitigates the earthquake acceleration prior to transferring to the structure efficiently. However, the performance of this system in concrete structures with different heights have not been evaluated thoroughly yet. This paper aims to evaluate the performance of LRB separation system in concrete structures with different heights. For this purpose, three, 16, and 23 story concrete structures are equipped by LRB and exposed to a far-field earthquake. Next, a time history analysis is conducted on each of the structures. Finally, the performance of the concrete structures is compared with each other in the term of their response to the earthquakes and the formation of plastic hinges. The results of the paper show that the rate of change in acceleration response and the ratio of drift along the height of 8 and 23 stories concrete structures are more than those of the 16-stories, and the use of LRB reduces the formation of plastic joints.

      • Elevated temperature resistance of concrete columns with axial loading

        Alaskar, Abdulaziz,Alyousef, Rayed,Alabduljabbar, Hisham,Alrshoudi, Fahed,Mohamed, Abdeliazim Mustafa,Jermsittiparsert, Kittisak,Ho, Lanh Si Techno-Press 2020 Advances in concrete construction Vol.9 No.4

        The influence of temperature on the material of concrete filled columns (CFCs) under axial loading has been quantitatively studied in this research. CFCs have many various advantages and disadvantages. One of the important inefficiency of classic CFCs design is the practical lack of hooped compression under the operational loads because of the fewer variables of Poisson's rate of concrete compared to steel. This is the reason why the holder tends to break away from the concrete core in elastic stage. It is also suggested to produce concrete filled steel tube columns with an initial compressed concrete core to surpass their design. Elevated temperatures have essentially reduced the strengths of steel tubes and the final capacity of CFCs exposed to fire. Thus, the computation of bearing capacity of concrete filled steel tube columns is studied here. Sometimes, the structures of concrete could be exposed to the high temperatures during altered times, accordingly, outcomes have shown a decrement in compressive-strength, then an increase with the reduction of this content. In addition, the moisture content at the minimal strength is declined with temperature rising. According to Finite Element (FE), the column performance assessment is carried out according to the axial load carrying capacities and the improvement of ductility and strength because of limitations. Self-stress could significantly develop the ultimate stiffness and capacity of concrete columns. In addition, the design equations for the ultimate capacity of concrete columns have been offered and the predictions satisfactorily agree with the numerical results. The proposed based model (FE model of PEC column) 65% aligns with the concrete exposed to high temperature. Therefore, computed solutions have represented a better perception of structural and thermal responses of CFC in fire.

      • KCI등재

        A model to develop the porosity of concrete as important mechanical property

        Rayed Alyousef,Hisham Alabduljabbar,Abdeliazim Mustafa Mohamed,Abdulaziz Alaskar,Kittisak Jermsittiparsert,Lanh Si Ho 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.26 No.2

        This numerical study demonstrates the porosity conditions and the intensity of the interactions with the aggressive agents. It is established that the density as well as the elastic modulus are correlated to ultrasonic velocity The following investigation assessed the effects of cement grade and porosity on tensile strength, flexural and compressive of Ultra High Performance Concrete (UHPC) as a numerical model in PLAXIS 2d Software. Initially, the existing strength-porosity equations were investigated. Furthermore, comparisons of the proposed equations with the existing models suggested the high accuracy of the proposed equations in predicting, cement grade concrete strength. The outcome obtained showed a ductile failure when un-corroded reinforced concrete demonstrates several bending-induced cracks transfer to the steel reinforcement. Moreover, the outcome also showed a brittle failure when wider but fewer transverse cracks occurred under bending loads. Sustained loading as well as initial pre-cracked condition during the corrosion development have shown to have significant impact on the corrosion behavior of concrete properties. Moreover, greater porosity was generally associated with lower compressive, flexural, and tensile strength. Higher cement grade, on the other hand, resulted in lower reduction in concrete strength. This finding highlighted the critical role of cement strength grade in determining the mechanical properties of concrete.

      • Influence of crack on the permeability of plastic concrete

        Yongqiang He,Rayed Alyousef,Abdulaziz Alaskar,Hisham Alabduljabbar,Abdeliazim Mustafa Mohamed,Nelson Maureira-Carsalade,Angel Roco-Videla,Alibek Issakhov,Hamid Assilzadeh 국제구조공학회 2021 Smart Structures and Systems, An International Jou Vol.27 No.5

        This study examined the relations between permeability of the concrete due to addition of new cracks. The different concrete types analyzed were standard concrete, reinforced steel fiber concrete, and reinforced concrete polypropylene fiber. In consideration of the improved polypropylene content of polypropylene fiber reinforced concrete, the crack diameter was decreased by 72-93% for up to 0.25% fiber and cracks were eliminated with 0.3% fiber inclusion. In terms of steel fiberreinforced concrete, the results showed that steel reinforcing macro fibers decrease the permeability of cracked concrete at wider crack widths. While the permeability of unreinforced concrete was the highest, 0.5% steel content resulted in lower permeability while a higher steel content concrete with 1% steel had the lowest permeability. Crack stitching phenomenon and the effect of multiple cracks may be attributed to the decrease in the permeability. With respect to normal concrete, the findings showed the crack opening displacement at the highest tension is less than 20 microns. At this loading stage, after unloading, around 80% of the displacement is restored and the residual crack opening is notably small, indicating the low impact of cracking on concrete permeability (CP) and showing that CP was increased with crack width. As a result, adding polypropylene aggregate to concrete could significantly reduce the width of crack, while adding steel fiber to concrete reduces the permeability of cracked concrete compared to normal concrete which may result in a minor crack on CP.

      • Influence of porosity and cement grade on concrete mechanical properties

        Huang, Jiandong,Alyousef, Rayed,Suhatril, Meldi,Baharom, Shahrizan,Alabduljabbar, Hisham,Alaskar, Abdulaziz,Assilzadeh, Hamid Techno-Press 2020 Advances in concrete construction Vol.10 No.5

        The given research focuses on examining the effect of relatively humidity (RH) and curing temperature on the hydrates as well as the porosity of calcium sulfoaluminate (CSA) cement pastes. Numerous tests, which consist of mercury intrusion porosimetry (MIP), thermosgravi metric (TG) and X-ray diffraction (XRD) were conducted. Various characterization techniques which include, scanning electron microscopy, Fourier transform microscopy along with X-ray diffraction evaluations were conducted on the samples to examine phase formation and crystallinity, morphology and microstructure along with bond formations and functional groups, respectively. During long-term study, the performance of concrete which consisted of limestone and flash-calcined was close to those from standard Portland cement concrete. Traditional classifications and methods of corrosion were widely used for the assessment of steel in concrete which may get employed to concrete which contains LC3 to recalibrate the range of polarization resistance for passitivity condition. For example, there is up to 79.5% and 146% respective flexural and compressive strengths. Moreover, they developed more advance electrical and thermo-mechanical performance with a substantial reduction in absorption of water of close to 400%. These advantages allow this research crucial to evaluate how these methods can be applied. Additionally, the research evaluates developed and more advanced cement preservation and repair techniques. The conclusion suggests concerted efforts by various stakeholders such as policy makers to enable low-carbon rates.

      • KCI등재

        Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

        Chanjuan Liu,Xinling Wu,Karzan Wakil,Kittisak Jermsittiparsert,Lanh Si Ho,Hisham Alabduljabbar,Abdulaziz Alaskar,Fahed Alrshoudi,Rayed Alyousef,Abdeliazim Mustafa Mohamed 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.34 No.5

        Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

      • KCI등재

        Computational analysis of three dimensional steel frame structures through different stiffening members

        Abdulaziz Alaskar,Karzan Wakil,Rayed Alyousef,Kittisak Jermsittiparsert,Lanh Si Ho,Hisham Alabduljabbar,Fahed Alrshoudi,Abdeliazim Mustafa Mohamed 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.35 No.2

        Ground motion records are commonly used for fragility curves (FCs) developing utilized in seismic loss estimating analysis for earthquake prone zones. These records could be ‘real’, say the recorded acceleration time series or ‘simulated’ records consistent with the regional seismicity and produced by use of alternative simulation methods. This study has focused on fragility curves developing for masonry buildings through computational ‘simulated’ ground motion records while evaluating the properness of these fragilities compared to the curves generated by the use of ‘real’ records. Assessing the dynamic responses of structures, nonlinear computational time history analyses through the equivalent single degree of freedom systems have been implemented on OpenSees platform. Accordingly, computational structural analyses of multi-story 3D frame structures with different stiffening members considering soil interaction have been carried out with finite element software according to (1992) Earthquake East-West component. The obtained results have been compared to each frame regarding soil interaction. Conclusion and recommendations with the discuss of obtaining findings are presented.

      • KCI등재

        Investigation on the monotonic behavior of the steel rack upright-beam column connection

        Yan Cao,Rayed Alyousef,Kittisak Jermsittiparsert,Lanh Si Ho,Abdulaziz Alaskar,Hisham Alabduljabbar,Fahed Alrshoudi,Abdeliazim Mustafa Mohamed 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.26 No.1

        The cold-formed steel storage racks are extensively employed in various industries applications such as storing products in reliable places and storehouses before distribution to the market. Racking systems lose their stability under lateral loads, such as seismic actions due to the slenderness of elements and low ductility. This justifies a need for more investigation on methods to improve their behavior and increase their capacity to survive medium to severe loads. A standardized connection could be obtained through investigation on the moment resistance, value of original rotational stiffness, ductility, and failure mode of the connection. A total of six monotonic tests were carried out to determine the behavior of the connection of straight 2.0 mm, and 2.6 mm thickness connects to 5 lug end connectors. Then, the obtained results are benched mark as the original data. Furthermore, an extreme learning machine (ELM) technique has been employed to verify and predict both moment and rotation results. Out of 4 connections, increase the ultimate moment resistance of connection by 13% and 18% for 2.0 mm and 2.6 mm upright connection, respectively.

      • Development of Pozzolanic material from clay

        Alaskar, Abdulaziz,Shah, S.N.R.,Keerio, Manthar Ali,Phulpoto, Javed Ali,Baharom, Shahrizan,Assilzadeh, Hamid,Alyousef, Rayed,Alabduljabbar, Hisham,Mohamed, Abdeliazim Mustafa Techno-Press 2020 Advances in concrete construction Vol.10 No.4

        The following paper concentrates on the objective of studying the influences of extent of duration and temperature on the Pozzolanic properties as well as reactivity of locally existing natural clay of Nai Gaj, district Dadu, Sindh Pakistan. The activation of the clay only occurs through heating when temperature in a furnace chamber reaches 600, 700 and 800oC for 1, 2 and 3 hours and at 900 and 1000℃ for 1 and 2 hours. Furthermore, the strength activity index (SAI) of advanced pozzolanic material happens to be identified through 20% cement replacement for different samples of calcined clay as per ASTM C-618. The compressive strength test of samples had been operated for 7 and 28-days curing afterwards. The maximum compressive strength had been seen in mix E in which cement was replaced with clay calcined at 700℃ for 1 hour that is 27.05 MPa that is 24.31% more than that of control mix. The results gathered from the SAI verdicts the optimal activation temperature is 700℃ within a one-hour time period. The SAI at a temperature of 700℃ with a one-hour duration at 28 days is 124.31% which happens to satisfy the requirements of the new Pozzolanic material, in order to be applied in mortar/concrete (i.e., 75%). The Energy- dispersive spectrometry (EDS) along with the X-ray diffraction (XRD) have been carried out in means of verifying whether there is silica content or amorphous silica present in metakaolin that has been developed. The findings gathered from the SAI were validated, as the analysis of XRD verified that there is in fact Pozzolanic activity of developed metakaolin. Additionally, based on observation, the activated metakaolin holds a significant influence on the increase in mortar's compressive strength.

      • KCI등재

        Cold-Formed Steel Lipped Channel Section Columns Undergoing Local-Overall Buckling Interaction

        Krishanu Roy,Tina Chui Huon Ting,Hieng Ho Lau,Rehan Masood,Rayed Alyousef,Hisham Alabduljabbar,Abdulaziz Alaskar,Fahed Alrshoudi,James B. P. Lim 한국강구조학회 2021 International Journal of Steel Structures Vol.21 No.2

        This paper presents an experimental and fi nite element (FE) investigation into the local-overall buckling interaction behaviour of axially loaded cold-formed steel (CFS) channel section columns. Current design guidelines from the American Iron and Steel Institute (AISI) and the Australian and New Zealand Standards (AS/NZS) recommend the use of a non-dimensional strength curve for determining the axial capacity of such CFS channel section columns. This study has reviewed the accuracy of the current AISI (2016), AS/NZS (2018) and Eurocode (EN 1993-1-3) design guidelines for determining the axial capacity of CFS channel sections under local-overall buckling interaction failure. A total of 40 tests were conducted on CFS channel sections covering stub, short, intermediate, and slender columns with varying thicknesses. A nonlinear FE model was then developed and validated against the test results. The validated FE model was used to conduct a parametric study comprising 70 FE models to review the accuracy of the current design guidelines in accordance with AISI (2016), AS/NZS (2018) and Eurocode (EN 1993-1-3). It was found that the AISI (2016) and AS/NZS (2018) are conservative by 10 to 15% on average when determining the axial capacity of pin-ended CFS channel section columns undergoing local-overall buckling interaction. Eurocode (EN 1993-1-3) design rules were found to lead to considerably more conservative predictions of column axial load capacity for CFS channels.This paper has therefore proposed modifi cations to the current design rules of AISI (2016) and AS/NZS (2018). The accuracy of proposed design rules was verifi ed using the FE analysis and test results of CFS channel section columns undergoing local-overall buckling interaction.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼