RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Service Innovation and Market Intelligence on Supply Chain Performance in Indonesian Fishing Industry

        Kittisak Jermsittiparsert,Jutamat Sutduean,Thanaporn Sriyakul 대한산업공학회 2019 Industrial Engineeering & Management Systems Vol.18 No.3

        Supply chain improvement often results in better economic value; therefore, important insights to improve the supply chain performance (SCP) in fishing industry of Indonesia are investigated. Fishing industry of Indonesia has important role to create employment opportunities and has important role in economic development. However, supply chain issues in this industry are more threatening towards the performance of this industry. Low performance of this industry has adverse consequences on economic development. The current study attempted to address the problem through service innovation and market intelligence. Hence, objective of this study is to investigate the effect of service innovation on SCP. The role of market intelligence is also examined. After collecting the data from managerial employees of fishing companies, it was analysed through structural equation modelling which revealed that service innovation and market intelligence has crucial role to boost SCP. Better service quality and market intelligence mechanism improves the performance of fishery companies. Thus, these companies should focus on service innovation and market intelligence.

      • KCI등재

        Investigation on the monotonic behavior of the steel rack upright-beam column connection

        Yan Cao,Rayed Alyousef,Kittisak Jermsittiparsert,Lanh Si Ho,Abdulaziz Alaskar,Hisham Alabduljabbar,Fahed Alrshoudi,Abdeliazim Mustafa Mohamed 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.26 No.1

        The cold-formed steel storage racks are extensively employed in various industries applications such as storing products in reliable places and storehouses before distribution to the market. Racking systems lose their stability under lateral loads, such as seismic actions due to the slenderness of elements and low ductility. This justifies a need for more investigation on methods to improve their behavior and increase their capacity to survive medium to severe loads. A standardized connection could be obtained through investigation on the moment resistance, value of original rotational stiffness, ductility, and failure mode of the connection. A total of six monotonic tests were carried out to determine the behavior of the connection of straight 2.0 mm, and 2.6 mm thickness connects to 5 lug end connectors. Then, the obtained results are benched mark as the original data. Furthermore, an extreme learning machine (ELM) technique has been employed to verify and predict both moment and rotation results. Out of 4 connections, increase the ultimate moment resistance of connection by 13% and 18% for 2.0 mm and 2.6 mm upright connection, respectively.

      • KCI등재

        Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

        Chanjuan Liu,Xinling Wu,Karzan Wakil,Kittisak Jermsittiparsert,Lanh Si Ho,Hisham Alabduljabbar,Abdulaziz Alaskar,Fahed Alrshoudi,Rayed Alyousef,Abdeliazim Mustafa Mohamed 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.34 No.5

        Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

      • KCI등재

        Computational analysis of three dimensional steel frame structures through different stiffening members

        Abdulaziz Alaskar,Karzan Wakil,Rayed Alyousef,Kittisak Jermsittiparsert,Lanh Si Ho,Hisham Alabduljabbar,Fahed Alrshoudi,Abdeliazim Mustafa Mohamed 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.35 No.2

        Ground motion records are commonly used for fragility curves (FCs) developing utilized in seismic loss estimating analysis for earthquake prone zones. These records could be ‘real’, say the recorded acceleration time series or ‘simulated’ records consistent with the regional seismicity and produced by use of alternative simulation methods. This study has focused on fragility curves developing for masonry buildings through computational ‘simulated’ ground motion records while evaluating the properness of these fragilities compared to the curves generated by the use of ‘real’ records. Assessing the dynamic responses of structures, nonlinear computational time history analyses through the equivalent single degree of freedom systems have been implemented on OpenSees platform. Accordingly, computational structural analyses of multi-story 3D frame structures with different stiffening members considering soil interaction have been carried out with finite element software according to (1992) Earthquake East-West component. The obtained results have been compared to each frame regarding soil interaction. Conclusion and recommendations with the discuss of obtaining findings are presented.

      • KCI등재

        Corporate Entrepreneurship and Business Performance of Logistic Companies in Indonesia

        Krisada Chienwattanasook,Samanan Wattanapongphasuk,Andi Luhur Prianto,Kittisak Jermsittiparsert 대한산업공학회 2019 Industrial Engineeering & Management Systems Vol.18 No.3

        Indonesian logistic industry is growing rapidly and contributing to the gross-domestic product (GDP). However, Indonesian logistic companies are facing various challenges. Corporate entrepreneurship is one of the crucial challenges facing by logistic companies. This problem is a constraint in the growth of these companies. Therefore, objective of this study is to address the relationship of corporate entrepreneurship and business performance among Indonesian logistic companies. Quantitative approach is used to accomplish this objective. A questionnaires survey was selected to collect the data from logistic employees. Results of the study found that corporate entrepreneurship has major role in logistic business performance. Time availability, management support and organization boundaries have important role to enhance logistic business performance. Additionally, work discretion increases the positive effect of corporate entrepreneurship and business performance. Therefore, logistic companies should focus on corporate entrepreneurship to resolve various issues related to entrepreneurship.

      • Elevated temperature resistance of concrete columns with axial loading

        Alaskar, Abdulaziz,Alyousef, Rayed,Alabduljabbar, Hisham,Alrshoudi, Fahed,Mohamed, Abdeliazim Mustafa,Jermsittiparsert, Kittisak,Ho, Lanh Si Techno-Press 2020 Advances in concrete construction Vol.9 No.4

        The influence of temperature on the material of concrete filled columns (CFCs) under axial loading has been quantitatively studied in this research. CFCs have many various advantages and disadvantages. One of the important inefficiency of classic CFCs design is the practical lack of hooped compression under the operational loads because of the fewer variables of Poisson's rate of concrete compared to steel. This is the reason why the holder tends to break away from the concrete core in elastic stage. It is also suggested to produce concrete filled steel tube columns with an initial compressed concrete core to surpass their design. Elevated temperatures have essentially reduced the strengths of steel tubes and the final capacity of CFCs exposed to fire. Thus, the computation of bearing capacity of concrete filled steel tube columns is studied here. Sometimes, the structures of concrete could be exposed to the high temperatures during altered times, accordingly, outcomes have shown a decrement in compressive-strength, then an increase with the reduction of this content. In addition, the moisture content at the minimal strength is declined with temperature rising. According to Finite Element (FE), the column performance assessment is carried out according to the axial load carrying capacities and the improvement of ductility and strength because of limitations. Self-stress could significantly develop the ultimate stiffness and capacity of concrete columns. In addition, the design equations for the ultimate capacity of concrete columns have been offered and the predictions satisfactorily agree with the numerical results. The proposed based model (FE model of PEC column) 65% aligns with the concrete exposed to high temperature. Therefore, computed solutions have represented a better perception of structural and thermal responses of CFC in fire.

      • KCI등재

        A model to develop the porosity of concrete as important mechanical property

        Rayed Alyousef,Hisham Alabduljabbar,Abdeliazim Mustafa Mohamed,Abdulaziz Alaskar,Kittisak Jermsittiparsert,Lanh Si Ho 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.26 No.2

        This numerical study demonstrates the porosity conditions and the intensity of the interactions with the aggressive agents. It is established that the density as well as the elastic modulus are correlated to ultrasonic velocity The following investigation assessed the effects of cement grade and porosity on tensile strength, flexural and compressive of Ultra High Performance Concrete (UHPC) as a numerical model in PLAXIS 2d Software. Initially, the existing strength-porosity equations were investigated. Furthermore, comparisons of the proposed equations with the existing models suggested the high accuracy of the proposed equations in predicting, cement grade concrete strength. The outcome obtained showed a ductile failure when un-corroded reinforced concrete demonstrates several bending-induced cracks transfer to the steel reinforcement. Moreover, the outcome also showed a brittle failure when wider but fewer transverse cracks occurred under bending loads. Sustained loading as well as initial pre-cracked condition during the corrosion development have shown to have significant impact on the corrosion behavior of concrete properties. Moreover, greater porosity was generally associated with lower compressive, flexural, and tensile strength. Higher cement grade, on the other hand, resulted in lower reduction in concrete strength. This finding highlighted the critical role of cement strength grade in determining the mechanical properties of concrete.

      • Performance assessment of buckling restrained brace with tubular profile

        Cao, Yan,Azar, Sadaf Mahmoudi,Shah, S.N.R.,Salih, Ahmed Fathi Mohamed,Thiagi, Tiana,Jermsittiparsert, Kittisak,Ho, Lanh Si Techno-Press 2020 Advances in nano research Vol.8 No.4

        In recent years, there has been an upsurge for the usage of buckling restrained braces (BRB) rather than ordinary braces, as they have evidently performed better. If the overall brace buckling is ignored, BRBs are proven to have higher energy absorption capacity and flexibility. This article aims to deliberate an economically efficient yet adequate type of all-steel BRB, comprised of the main components as in traditional ones, such as : (1) a steel core that holds all axial forces and (2) a steel restrainer tube that hinders buckling to occurr in the core; there is a more practical detailing in the BRB system due to the elimination of a filling mortar. An investigation has been conducted for the proposed rectangular-tube core BRB and it is hysteric behavioral results have been compared to previous researches conducted on a structure containing a similar plate core profile that has the same cross-sectional area in its core. A loss of strength is known to occur in the BRB when the limiting condition of local buckling is not satisfied, thus causing instability. This typically occurs when the thickness of the restrainer tube's wall is smaller than the cross-sectional area of the core plate or its width. In this study, a parametric investigation for BRBs with different formations has been performed to verify the effect of the design parameters such as different core section profiles, restraining member width to thickness ratio and relative cross-sectional area of the core to restrainer, on buckling load evaluation. The proposed BRB investigation results have also been presented and compared to past BRB researches with a plate profile as the core section, and the advantages and disadvantages of this configuration have been discussed, and it is concluded that BRBs with tubular core section exhibit a better seismic performance than the ones with a plate core profile.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼