RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Combined effect of the horizontal components of earthquakes for moment resisting steel frames

        Alfredo Reyes-Salazar,José A. Juárez-Duarte,Arturo López-Barraza,Juan I. Velázquez-Dimas 국제구조공학회 2004 Steel and Composite Structures, An International J Vol.4 No.3

        The commonly used seismic design procedures to evaluate the maximum effect of both horizontal components of earthquakes, namely, the Square Root of the Sum of the Squares (SRSS) and the 30- percent (30%) combination rules, are re-evaluated. The maximum seismic responses of four threedimensional moment resisting steel frames, in terms of the total base shear and the axial loads at interior, lateral and corner columns, are estimated as realistically as possible by simultaneously applying both horizontal components. Then, the abovementioned combination rules and others are evaluated. The numerical study indicates that both, the SRSS rule and the 30% combination method, may underestimate the combined effect. It is observed that the underestimation is more for the SRSS than for the 30% rule. In addition, the underestimation is more for inelastic analysis than for elastic analysis. The underestimation cannot be correlated with the height of the frames or the predominant period of the earthquakes. A basic probabilistic study is performed in order to estimate the accuracy of the 30% rule in the evaluation of the combined effect. Based on the results obtained in this study, it is concluded that the design requirements for the combined effect of the horizontal components, as outlined in some code-specified seismic design procedures, need to be modified. New combination ways are suggested.

      • KCI등재후보

        Energy-based damage index for steel structures

        E. Bojórquez,A. Terán-Gilmore,S.E. Ruiz,A. Reyes-Salazar 국제구조공학회 2010 Steel and Composite Structures, An International J Vol.10 No.4

        Ample research effort has been oriented into developing damage indices with the aim of estimating in a reasonable manner the consequences, in terms of structural damage and deterioration, of severe plastic cycling. Although several studies have been devoted to calibrate damage indices for steel and reinforced concrete members; currently, there is a challenge to study and calibrate the use of such indices for the practical evaluation of complex structures. The aim of this paper is to introduce an energy-based damage index for multi-degree-offreedom steel buildings that accounts explicitly for the effects of cumulative plastic deformation demands. The model has been developed by complementing the results obtained from experimental testing of steel members with those derived from analytical studies regarding the distribution of plastic demands on several steel frames designed according to the Mexico City Building Code. It is concluded that the approach discussed herein is a promising tool for practical structural evaluation of framed structures subjected to large energy demands.

      • KCI등재

        Estimation of peak wind response of building using regression analysis

        Omar Payán-Serrano,Edén Bojórquez,Alfredo Reyes-Salazar,Jorge Ruiz-García 한국풍공학회 2019 Wind and Structures, An International Journal (WAS Vol.29 No.2

        The maximum along-wind displacement of a considerable amount of building under simulated wind loads is computed with the aim to produce a simple prediction model using multiple regression analysis with variables transformation. The Shinozuka and Newmark methods are used to simulate the turbulent wind and to calculate the dynamic response, respectively. In order to evaluate the prediction performance of the regression model with longer degree of determination, two complex structural models were analyzed dynamically. In addition, the prediction model proposed is used to estimate and compare the maximum response of two test buildings studied with wind loads by other authors. Finally, it was proved that the prediction model is reliable to estimate the maximum displacements of structures subjected to the wind loads.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼