RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Responses of Pea Varieties to Rhizobium Inoculation: Nitrogenase Activity, Dry Matter Production and Nitrogen Uptake

        Solaiman, A.R.M.,Khondaker, M.,Karim, A.J.M.S.,Hossain, M.M. The Korean Society of Crop Science 2003 Korean journal of crop science Vol.48 No.5

        The responses of five varieties and three cultivars of pea (Pisum sativum) to Rhizobium inoculation on nodulation, growth, nitrogenase activity, dry matter production and N uptake were investigated. The pea varieties were IPSA Motorshuti-l, IPSA Motorshuti-2, IPSA Motorshuti-3, BARI Motorshuti-l, BARI Motorshuti-2 and the cultivars were 063, Local small and Local white. Fifty percent seeds of each pea variety/cultivar were inoculated with a mixture of Rhizobium inoculants at rate of 15g/kg seed and the remaining fifty percent seeds were kept uninoculated. The plants inoculated with Rhizobium inoculant significantly increased nodulation, growth, nitrogenase activity, dry matter production and N uptake. Among the varieties/cultivars, BARI Motorshuti-l performed best in almost all parameters including nitrogenase activity of root nodule bacteria of the crop. There were positive correlations among the number and dry weight of nodules (r=$0.987^{**}$, $0.909^{**}$), nitrogenase activity of root nodule bacteria (r=$0.944^{**}$, $0.882^{**}$), dry weight of shoot (r=$0.787^{**}$, $0.952^{**}$), N content (r=$0.594^{**}$, $0.605^{**}$) and N uptake (r=$0.784^{**}$, $0.922^{**}$) by shoot both at flowering and pod filling stages of the crop, respectively. It was concluded that BARI Motorshuti-l in symbiotic association with Rhizobium inoculant performed best in recording nitrogenase activity, dry matter production and N uptake by pea.

      • KCI등재

        Responses of Pea Varieties to Rhizobium Inoculation

        M. Khondaker,A.R.M. Solaiman,A.J.M.S. Karim,M.M. Hossain 韓國作物學會 2003 Korean journal of crop science Vol.48 No.5

        The responses of five varieties and three cultivars of pea (Pisum sativum) to Rhizobium inoculation on nodulation, growth, nitrogenase activity, dry matter production and N uptake were investigated. The pea varieties were IPSA Motorshuti-l, IPSA Motorshuti-2, IPSA Motorshuti-3, BARI Motorshuti-l, BARI Motorshuti-2 and the cultivars were 063, Local small and Local white. Fifty percent seeds of each pea variety/cultivar were inoculated with a mixture of Rhizobium inoculants at rate of 15g/kg seed and the remaining fifty percent seeds were kept uninoculated. The plants inoculated with Rhizobium inoculant significantly increased nodulation, growth, nitrogenase activity, dry matter production and N uptake. Among the varieties/cultivars, BARI Motorshuti-l performed best in almost all parameters including nitrogenase activity of root nodule bacteria of the crop. There were positive correlations among the number and dry weight of nodules (r=0.987** , 0.909** ), nitrogenase activity of root nodule bacteria (r=0.944** , 0.882** ), dry weight of shoot (r=0.787** , 0.952** ), N content (r=0.594** , 0.605** ) and N uptake (r=0.784** , 0.922** ) by shoot both at flowering and pod filling stages of the crop, respectively. It was concluded that BARI Motorshuti-l in symbiotic association with Rhizobium inoculant performed best in recording nitrogenase activity, dry matter production and N uptake by pea.

      • KCI등재

        Salinity Tolerance of Blackgram and Mungbean 2 : Mineral Ions Accumulation in Different Plant Parts

        P. K. Raptan,A. Hamid,Q. A. Khaliq,A. R. M. Solaiman,J. U. Ahmed,M. A. Karim 韓國作物學會 2001 Korean journal of crop science Vol.46 No.5

        Blackgram (Vigna mungo) is more salt tolerant than mungbean (Vigna radiata). This study was initiated to know whether the accumulation pattern of mineral ions in different plant parts plays a significant role in the differences in salt tolerance between the two Vigna species. Different mineral ions, viz. N, Cl, Na, K, Mg and Ca in different organs of two varieties of each of blackgram- Barimash-l (susceptible one) and Barimash-2 (tolerant one), and mungbean-Barimung-3 (tolerant one) and Barimung-4(susceptible one), were analyzed after growing with 0, 50, 75 and 100 mM NaCl solutions. The two crops showed a decreased but similar pattern of total N accumulation under saline conditions. The tolerant variety of both the crops showed a less reduction in total N than the susceptible one. Leaves showed the maximum while stem the minimum N, irrespective of levels of salinity. C l[-10] and N a+ accumulation increased with the increasing salinity levels. Interestingly, similar to a halophyte, the salt tolerant blackgram exhibited conspicuously higher amount of N a+ in the shoot than the salt-susceptible mungbean. However, the tolerant varieties showed less amount of N a+ than the susceptible one, especially in blackgram. Seeds of both Vigna spp. accumulated the minimum amount of N a+ than other plant parts. K+ accumulation decreased by salinity in most of the plant parts, except seeds. Blackgram showed larger reduction in K than mungbean. The Mg++ increased in leaves, petioles and stem by salinity while decreased in the roots, podshells and seeds in both the crops. Salinity increased Ca++ accumulation in all plant-parts except roots of both Vigna spp. Apparently, the leaves of mungbean accumulated higher concentration of Ca++ than blackgram. Varietal differences in the accumulation pattern of K+ , Mg++ and Ca++ were not clear. It was concluded that blackgram, presumably, possesses a similar salt tolerance mechanism to halophyte, and the pattern of accumulation of mineral ions in blackgram and mungbean was not fully ascribed to the differences in salinity tolerance between the two Vigna species.gna species.ies.s.ies.

      • KCI등재

        Salinity Tolerance of Blackgram and Mungbean: II. Mineral Ions Accumulation in Different Plant Parts

        Karim, M.A.,Raptan, P.K.,Hamid, A.,Khaliq, Q.A.,Solaiman, A.R.M.,Ahmed, J.U. The Korean Society of Crop Science 2001 Korean journal of crop science Vol.46 No.5

        Blackgram (Vigna mungo) is more salt tolerant than mungbean (Vigna radiata). This study was initiated to know whether the accumulation pattern of mineral ions in different plant parts plays a significant role in the differences in salt tolerance between the two Vigna species. Different mineral ions, viz. N, Cl, Na, K, Mg and Ca in different organs of two varieties of each of blackgram- Barimash-l (susceptible one) and Barimash-2 (tolerant one), and mungbean-Barimung-3 (tolerant one) and Barimung-4(susceptible one), were analyzed after growing with 0, 50, 75 and 100 mM NaCl solutions. The two crops showed a decreased but similar pattern of total N accumulation under saline conditions. The tolerant variety of both the crops showed a less reduction in total N than the susceptible one. Leaves showed the maximum while stem the minimum N, irrespective of levels of salinity. C $l^{[-10]}$ and N $a^{+}$ accumulation increased with the increasing salinity levels. Interestingly, similar to a halophyte, the salt tolerant blackgram exhibited conspicuously higher amount of N $a^{+}$ in the shoot than the salt-susceptible mungbean. However, the tolerant varieties showed less amount of N $a^{+}$ than the susceptible one, especially in blackgram. Seeds of both Vigna spp. accumulated the minimum amount of N $a^{+}$ than other plant parts. $K^{+}$ accumulation decreased by salinity in most of the plant parts, except seeds. Blackgram showed larger reduction in K than mungbean. The $Mg^{++}$ increased in leaves, petioles and stem by salinity while decreased in the roots, podshells and seeds in both the crops. Salinity increased $Ca^{++}$ accumulation in all plant-parts except roots of both Vigna spp. Apparently, the leaves of mungbean accumulated higher concentration of $Ca^{++}$ than blackgram. Varietal differences in the accumulation pattern of $K^{+}$, $Mg^{++}$ and $Ca^{++}$ were not clear. It was concluded that blackgram, presumably, possesses a similar salt tolerance mechanism to halophyte, and the pattern of accumulation of mineral ions in blackgram and mungbean was not fully ascribed to the differences in salinity tolerance between the two Vigna species.gna species.ies.s.ies.

      • KCI등재

        Response of Chickpea to Dual Inoculation with Rhizobiumand Arbuscular Mycorrhiza, Nitrogen and Phosphorus

        A.R.M. Solaiman,M.N. Molla,M.D. Hossain 한국작물학회 2006 Korean journal of crop science Vol.51 No.7

        The response of chickpea (Cicer arietinum L.) to dual inoculation with Rhizobium (R) and arbuscular mycorrhiza (AM), nitrogen (N) and phosphorus (P) was studied on spore abundance and colonization of AM, nodulation, growth, yield attributes and yield. In all the parameters of the crop the performance of Rhizobium inoculant alone was superior to control. Dual inoculation with Rhizobium and AM in presence of P performed the best in recording number of spore 100 g-1 rhizosphere soil and root colonization, number and dry weight of nodule, dry weights of shoot and root, number of pod plant-1, number of seed pod-1, seed and stover yields of chickpea. The maximum seed yield of 3.33 g plant-1 was obtained by inoculating chickpea plants with Rhizobium and AM in association with P. From the view point of nodulation, growth, yield attributes and yield of chickpea, dual inoculation with Rhizobium and AM along with P was considered to be the balanced combination of nutrients for achieving the highest output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

      • KCI등재

        Response of Chickpea to Dual Inoculation with Rhizobium and Arbuscular Mycorrhiza, Nitrogen and Phosphorus

        Solaiman, A.R.M.,Molla, M.N.,Hossain, M.D. The Korean Society of Crop Science 2006 Korean journal of crop science Vol.51 No.6

        The response of chickpea (Cicer arietinum L.) to dual inoculation with Rhizobium (R) and arbuscular mycorrhiza (AM), nitrogen (N) and phosphorus (P) was studied on spore abundance and colonization of AM, nodulation, growth, yield attributes and yield. In all the parameters of the crop the performance of Rhizobium inoculant alone was superior to control. Dual inoculation with Rhizobium and AM in presence of P performed the best in recording number of spore $100g^{-1}$ rhizosphere soil and root colonization, number and dry weight of nodule, dry weights of shoot and root, number of pod $plant^{-1}$, number of seed $pod^{-1}$, seed and stover yields of chickpea. The maximum seed yield of 3.33 g $plant^{-1}$ was obtained by inoculating chickpea plants with Rhizobium and AM in association with P. From the view point of nodulation, growth, yield attributes and yield of chickpea, dual inoculation with Rhizobium and AM along with P was considered to be the balanced combination of nutrients for achieving the highest output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

      • KCI등재

        Effects of Rhizobium Inoculant, Compost, and Nitrogen on Nodulation, Growth, and Yield of Pea

        Solaiman, A.R.M.,Rabbani, M.G. The Korean Society of Crop Science 2006 한국작물학회지 Vol.51 No.6

        The effects of Rhizobium inoculant, compost, and nitrogen on nodulation, growth, dry matter production, yield attributes, and yield of pea (Pisum sativum) var, IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant alone performed best in recording number and dry weight of nodules/plant. The highest green seed yield of 8.38 ton/ha (36.9% increase over control) and mature seed yield of 2.97 ton/ha (73.7% increase over control) were obtained by the application of 90 kg N/ha. The effects of 60 kg N/ha, Rhizobium inoculant alone and Rhizobium inoculant along with 5 ton compost/ha were same as the effect of 90 kg N/ha in recording plant height, root length, dry weight of shoot, and root both at preflowering and pod filling stages, number of mature pods/plant, number of mature seeds/pod, 1000-seed weight, green, and mature seed yields of pea.

      • KCI등재

        Effects of Rhizobium Inoculant, Compost, and Nitrogen onNodulation, Growth, and Yield of Pea

        A. R. M. Solaiman,M. G . Rabbani 한국작물학회 2006 Korean journal of crop science Vol.51 No.7

        The effects of Rhizobium inoculant, compost, and nitrogen on nodulation, growth, dry matter production, yield attributes, and yield of pea (Pisum sativum) var. IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant alone performed best in recording number and dry weight of nodules/plant. The highest green seed yield of 8.38 ton/ha (36.9% increase over control) and mature seed yield of 2.97 ton/ha (73.7% increase over control) were obtained by the application of 90 kg N/ha. The effects of 60 kg N/ha, Rhizobium inoculant alone and Rhizobium inoculant along with 5 ton compost/ha were same as the effect of 90 kg N/ha in recording plant height, root length, dry weight of shoot, and root both at preflowering and pod filling stages, number of mature pods/plant, number of mature seeds/pod, 1000-seed weight, green, and mature seed yields of pea.

      • KCI등재

        Effects of Inoculation of Rhizobium and Arbuscular Mycorrhiza, Poultry litter, Nitrogen, and Phosphorus on Growth and Yield in Chickpea

        Solaiman A. R. M.,Rabbani M. G.,Molla M. N. The Korean Society of Crop Science 2005 Korean journal of crop science Vol.50 No.4

        The experiment was conducted at the Ban­gabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur to study the response of chickpea (Cicer arietinum L) to dual inoculation of Rhizobium and arbuscular mycorrhiza, poultry litter, nitrogen, and phosphorus on spore population and colonization, nodulation, growth, yield attributes, and yield. The performance of Rhizobium inoculant alone was superior to control in all the parameters of the crop studied. Among the treatments dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter performed best in recording number and dry weight of nodules, dry weight of shoots and roots, number of pods/plant, number of seeds/pod, and seed yields of chickpea. The highest seed yield of 3.96g/plant was obtained by inoculating chickpea plants with dual inoculation of Rhizobium and arbuscular mycorrhiza in association with poultry litter. Treatments receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of nitrogen and phosphorus, Rhizobium inoculant in presence of nitrogen and phosphorus, and that of arbuscular mycorrhiza in presence of nitrogen and phosphorus were similar as that of treatment receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter. From the view point of nodulation, growth, yield attributes, and yields of chickpea, dual inoculation of Rhizobium inoculant and arbuscular mycorrhiza along with poultry litter was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼