RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        철-크롬 산화환원흐름전지에서 Nafion막의 철-크롬 Crossover

        김영숙,오소형,김은비,김다영,김성지,추천호,박권필,Kim, Young-Sook,Oh, So-Hyeong,Kim, Eunbi,Kim, Dayoung,Kim, Seongji,Chu, Cheun-Ho,Park, Kwonpil 한국화학공학회 2018 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.56 No.1

        산화환원흐름전지(Redox Flow Battery, RFB)는 대용량 에너지 저장장치로 바나듐 산화환원흐름전지가 대표적인 RFB인데, VRFB는 고가인 점이 문제다. 철-크롬RFB는 저가의 활물질을 사용해 경제적인 점이 장점인데, 성능이 낮은 점이 해결해야할 과제다. 낮은 성능의 한 원인이 활물질의 크로스오버인데, 본 연구에서 철과 크롬 이온의 Nafion 막 크로스오버 및 Nafion 막의 안정성에 대해 실험하였다. 철과 크롬이온의 Nafion 막 투과도는 각각 $5.5{\times}10^{-5}$, $6.0{\times}10^{-5}cm^2/min$ 이었다. Nafion 막에서 바나듐 이온의 투과도 $2.9{\times}10^{-6}cm^2/min$ 보다 18.9~20.7배 높아 철과 크롬 이온의 Nafion 막 크로스오버가 성능 저하의 한 원인임을 보였다. 온도 증가에 따라 크로스오버가 급증(활성화 에너지 38.8 kJ/mol)하므로 낮은 온도에서 구동하는 것이 크로스오버에 의한 성능감소를 저하시키는 방법임을 나타냈다. Nafion막은 3M HCl용액에서 비교적 안정적이었다. The redox flow battery (RFB) is a large-capacity energy storage equipment, and the vanadium redox flow cell is a typical RFB, but VRFB is expensive. Iron-chrome RFBs are economical because they use low-cost active materials, but their low performance is a urgent problem. In this study, the crossover of iron and chromium ion through Nafion membrane and the stability of Nafion membrane in HCl solution were investigated. The permeability of iron and chrome ion through Nafion were $5.5{\times}10^{-5}$ and $6.0{\times}10^{-5}cm^2/min$, respectively, which was 18.9~20.7 times higher than that of vanadium ion ($2.9{\times}10^{-6}cm^2/min$). The crossover of iron and chromium ions were shown to be a cause of performance decrease in Iron-chrome RFB. As the temperature increases, the crossover increases rapidly (activation energy 38.8 kJ/ mol), indicating that operation at low temperature is a methode to reduce the performance loss due to crossover. Nafion membranes were relatively stable in 3 M HCl solution.

      • KCI등재

        고분자전해질 연료전지 열화 분석방법에 의한 PEM 수전해 열화 평가

        오소형 ( Sohyeong Oh ),양진원 ( Jinwon Yang ),추천호 ( Cheun-ho Chu ),나일채 ( Il-chai Na ),박권필 ( Kwonpil Park ) 한국화학공학회 2021 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.59 No.1

        PEM(Proton Exchange Membrane) 수전해는 PEM 연료전지와 동일한 PEM 전해질 막을 사용하며, 동일한 반응이지만 방향이 반대인 반응에 의해 진행된다. PEM 연료전지는 전해질 막과 촉매의 열화와 내구성에 대해 많은 연구가 진행되어 개발된 열화분석 방법이 많다. 본 연구에서 PEM 수전해 내구성 평가에 PEM 연료전지 내구성 평가 방법 적용이 가능한지 검토하였다. PEM 수전해 열화과정에서 PEM 연료전지와 동일한 조건으로 LSV(Linear sweep voltammetry), CV(Cyclic voltammetry), Impedance, SEM(Scanning Electron Microscope), FT-IR(Fourier Transform Infrared spectroscopy) 등을 분석해 비교하였다. PEM 연료전지처럼 막을 통과한 수소가 Pt/C 전극에서 산화되어 수소투과전류밀도를 측정함으로써 PEM 수전해 고분자 막의 열화정도를 분석할 수 있었다. 수소/질소 유입 조건에서 CV에 의한 전극활성면적(ECSA)을 측정해 전극열화를 분석할 수 있었다. 수소와 공기를 Pt/C 전극과 IrO<sub>2</sub> 전극에 공급하면서 각 전극의 임피던스를 측정해 전극과 고분자 막의 내구성을 평가할 수 있었다. The PEM(Proton Exchange Membrane)water electrolysis uses the same PEM electrolyte membrane as the PEM fuel cell and proceeds by the same reaction but the opposite direction. The PEM fuel cell has many methods of degradation analysis since many studies have been conducted on the degradation and durability of the membrane and catalyst. We examined whether PEM fuel cell durability evaluation method can be applied to PEM electrolytic durability evaluation. During the PEM electrolytic degradation process, LSV(Linear sweep voltammetry), CV(Cyclic voltammetry), Impedance, SEM(Scanning Electron Microscope) and FT-IR(Fourier Transform Infrared spectroscopy) were analyzed and compared under the same conditions as the PEM fuel cell. As the PEM fuel cell, hydrogen passing through the membrane was oxidized at the Pt/C electrode, and the hydrogen permeation current density was measured to analyze the degree of degradation of the PEM membrane. Electrode degradation could be analyzed by measuring the electrode active area (ECSA) by CV under hydrogen/nitrogen flowing conditions. While supplying hydrogen and air to the Pt/C electrode and the IrO<sub>2</sub> electrode, the impedance of each electrode was measured to evaluate the durability of the electrode and membrane.

      • KCI등재

        돼지 분뇨와 sPAES 막을 이용한 미생물 연료전지의 특성

        이세훈 ( Se-hoon Lee ),문지윤 ( Ji-yoon Mun ),김영숙 ( Young-sook Kim ),추천호 ( Cheun-ho Chu ),나일채 ( Il-chai Na ),이정훈 ( Jeong-hoon Lee ),이무석 ( Moo-seok Lee ),이동훈 ( Dong-hoon Lee ),박권필 ( Kwon-pil Park ) 한국화학공학회 2016 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.54 No.4

        고분자전해질 연료전지용 MEA (Membrane and Electrode Assembly)와 돼지분뇨를 이용해 미생물연료전지(MFC)를 구동하였다. 미생물 연료전지에서 과불소계막과 탄화수소막의 성능을 비교하였다. 탄화수소막으로 sPAES 막을 사용하였고 과불소계막은 Gore 막을 사용했다. sPAES MEA가 Gore MEA보다 OCV는 50mV 높았고 출력 밀도는 비슷했다. sPAES 막을 강화시킴으로써 성능을 안정시킬 수 있었다. 미생물 연료전지의 셀 온도 45℃에서 최고의 성능을 얻었고 배양액 순환속도 50 ml/min에서 최고의 성능을 얻었다. 최적 조건에서 돼지 분뇨를 이용한 미생물연료전지에서 최고1,100 mW/㎡의 출력 밀도가 발생하였다. Microbial fuel cells (MFC) were operated with pig wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). Performance of hydrocarbon membrane was compared with that of perfluoro membrane at MFC condition. Sulfonated-Poly(Arylene Ether Sulfone) was used as hydrocarbon membrane and Gore membrane was used as perfluoro membrane. OCV of sPAES MEA was 50mV higher than that of Gore MEA and power density of sPAES MEA was similar that of Gore MEA. Reinforcement of sPAES membrane stabilized the performance of MEA in MFC. The highest performance was obtained at temperature of 45 oC and with culture solution circulation rate of 50 ml/min. The highest power density was 1,100 mW/㎡ at optimum condition in MFC using pig waste.

      • KCI등재

        황산/글루코스 용액으로부터 전기투석에 의한 황산 분리

        이세훈 ( Se-hoon Lee ),김영숙 ( Young-sook Kim ),추천호 ( Cheun-ho Chu ),나일채 ( Il-chai Na ),오용환 ( Yong-hwan Oh ),박권필 ( Kwon-pil Park ) 한국화학공학회 2017 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.55 No.1

        황산에 의한 바이오매스의 당화 후 황산의 회수는 매우 중요하다. 본 연구에서는 전기투석 방법에 의해 황산과 글루코스 혼합용액으로부터 황산을 분리하는 연구를 하였다. 전기투석은 음이온막과 양이온막을 사용한 3실 방식이 일반적인데 본 연구에서는 음이온막 만을 사용한 2실 방식을 실험했다. 글루코스 10~30% 황산농도 1~3M 농도 범위의 용액에서 2실 방식의 전기투석으로 황산을 완전 분리할 수 있었다. 실험한 3종류의 음이온 막 중에서 확산과 대류의 영향이 작은 음이온 막에서는 전류밀도에 비례해 황산분리 속도가 증가하였다. 전기를 가하지 않고 확산과 대류에 의해 황산분리 45%를 달성할 수 있었다. Recovery of sulfuric acid is very important after biomass converted to sugar by acid hydrolysis. In this work, the separation of sulfuric acid from sulfuric acid/glucose solution was studied by electrodiaysis. Three chamber method, which requires both anion membrane and cation membrane, is the most commonly used in the electrodialysis process, but two chamber method using only an anion membrane was the focus of this study. Sulfuric acid was perfectly separated from a mixture of 10~30 wt% glucose and 1~3 M sulfuric acid by electrodialysis using two chamber method. The separation rate of sulfuric acid lineary increased with higher current density when the affect of diffusion and convection of the membrane was small. Without electric energy, 45% of sulfuric acid was separated by diffusion and convection only.

      • KCI등재

        효소연료전지의 Anode 제조조건이 OCV에 미치는 영향

        김영숙 ( Young Sook Kim ),이세훈 ( Se Hoon Lee ),추천호 ( Cheun Ho Chu ),나일채 ( Il Chai Na ),이호 ( Ho Lee ),박권필 ( Kwon Pil Park ) 한국화학공학회 2015 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.53 No.1

        효소 전극 anode와 PEMFC용 전극 cathode를 이용하여 효소연료전지를 구동하였다. 효소 anode는 그래파이트 분말과 효소로서 글루코스 산화제, 전자매개체로서 페로센을 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. Anode제조조건을 변화시키며 OCV를 측정해 효소 anode 제조 최적조건을 찾았다. 효소 anode 압축 시 최적 압력은 9.0MPa였다. 효소 anode에서 그래파이트가 60%일 때 최고의 OCV를 나타냈다. anode 기질 용액의 최적 글루코스 농도는 1.7 mol/l이었으며, anode의 효소 활성은 7일 동안 안정적으로 유지되었다. Enzyme fuel cells were composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase as a enzyme and ferrocene as a mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 9.0 MPar for enzyme anode pressing process. Highest OCV was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7mol/l in anode substrate solution and enzyme activity of anode was stable for 7 days.

      • KCI등재

        효소연료전지의 Cathode 제조조건이 OCV에 미치는 영향

        이세훈 ( Se-hoon Lee ),김영숙 ( Young-sook Kim ),추천호 ( Cheun-ho Chu ),나일채 ( Il-chai Na ),이정훈 ( Jung-hoon Lee ),박권필 ( Kwon-pil Park ) 한국화학공학회 2016 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.54 No.2

        효소 전극 cathode와 PEMFC용 전극 anode를 이용하여 효소연료전지를 구동하였다. 효소 cathode는 그래파이트 분말과 효소로서 Laccase, 산화환원 매개체로서 ABTS를 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. cathode 제조조건을 변화시키며 OCV를 측정해 효소 cathode 제조 최적조건을 찾았다. 효소 cathode 압축 시 최적 압력은 4.0 bar 였다. 효소 cathode에서 그래파이트가 95%일 때 최고의 OCV를 나타냈다. cathode기질 용액의 최적 글루코스 농도는 0.4 mol/l이었다. Enzyme fuel cells were composed of enzyme cathode and PEMFC anode. Enzyme cathode was fabricated by compression of a mixture of graphite particle, laccase as a enzyme and ABTS as a redox mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of cathode manufacture factors, to find optimum condition of enzyme cathode. Optimum pressure was 4.0 bar for enzyme cathode pressing process. Highest OCV was obtained at 95% graphite composition in enzyme cathodee. Optimum glucose concentration was 0.4 mol/l in cathode substrate solution.

      • SCOPUSKCI등재

        저생 미생물 연료전지(BMFC)의 성능에 미치는 발효 유기물 첨가 효과

        이미화 ( Mi-hwa Lee ),양설화 ( Seol-hwa Yang ),김영숙 ( Young-sook Kim ),추천호 ( Cheun-ho Chu ),박권필 ( Kwonpil Park ) 한국화학공학회 2022 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.60 No.4

        저생 미생물 연료전지(BMFC)는 바다나 호수의 뻘 속에서 저생 미생물이 유기물을 분해하면서 발생시키는 전기를 이용하는 친환경적인 에너지 변환장치다. 본 연구에서는 갯벌에 유입되는 생활 폐수가 저생 미생물 연료전지 성능에 어떤 영향을 주는지 파악하고자, 음식물에 들어가는 유기물들을 발효시켜 갯벌과 혼합해서 BMFC 성능을 비교검토 하였다. 박력분과 비타민(B<sub>2</sub>, B<sub>6</sub>, B<sub>12</sub>, C, D, E)이 많이 함유된 음식물을 발효시켜 첨가함으로써 BMFC 성능을 49% 향상시켰다. 발효 유기물의 양이 증가할수록 최고 출력밀도가 증가하였고, 25~29일 발효시킨 발효 유기물이 BMFC에 최적임을 보였다. A benthic microbial fuel cell (BMFC) is an eco-friendly energy conversion device that uses electricity generated by benthic microorganisms decomposing organic matter in the mud of the sea or lake. In this study, in order to understand how domestic wastewater flowing into tidal flats affects the performance of BMFC. BMFC performance was compared and reviewed by fermenting organic substances in food and mixing them with tidal flats. Performance of the BMFC was improved by 49% by adding fermented food rich in vitamins (B<sub>2</sub>, B<sub>6</sub>, B<sub>12</sub>, C, D, E) and soft flour. The maximum power density increased as the amount of fermented organic matter increased, and it was shown that the fermented organic matter fermented during 25~29 days was optimal for BMFC.

      • KCI등재

        가축 분뇨를 이용한 미생물 연료전지의 특성 및 MEA 열화

        박권필 ( Kwon Pil Park ),김영숙 ( Young Sook Kim ),추천호 ( Cheun Ho Chu ),정재진 ( Jae Jin Jeong ),안명원 ( Myung Won Ahn ),나일채 ( Il Chai Na ),이정훈 ( Jeong Hoon Lee ) 한국화학공학회 2014 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.52 No.2

        고분자전해질 연료전지용 MEA(Membrane and Electrode Assembly)와 가축분뇨를 이용해 미생물연료전지(MFC)를 구동하였다. 여러 균을 혼합해 MFC를 구동했을 때 개별적으로 구동했을 때보다 높은 개회로 전위(OCV)를 나타냈다. 돼지분뇨, 소분뇨, 닭분뇨, 오리 분뇨 중 돼지 분뇨를 이용했을 때 제일 높은 OCV 540mV를 보였다. 그리고 돼지분뇨에서 최고 963mW/m2의 전력이 발생하였다. MFC 구동과정에서 MEA의 Na2+, Ca2+, K+ 이온 및 불순물들에 의한 오염이 MFC의 낮은 성능의 한 원인임을 확인하였다. Microbial fuel cells (MFC) were operated with livestock wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). OCV of MFC with mixtures of microbial was higher than that of MFC with single microbial. MFC using pig wastes showed highest OCV (540 mV) among cow waste, chicken waste and duck waste. And the power density of MFC using pig waste was 963 mW/m2. Contamination of MEA withNa2+, Ca2+, K+ ion and impurities was the one cause for low performance of MFC during operation.

      • KCI등재

        효소연료전지의 Anode 제조조건이 성능에 미치는 영향

        이세훈 ( Se Hoon Lee ),황병찬 ( Byung Chan Hwang ),이혜리 ( Hye Ri Lee ),김영숙 ( Young Sook Kim ),추천호 ( Cheun Ho Chu ),나일채 ( Il Chai Na ),박권필 ( Kwon Pil Park ) 한국화학공학회 2015 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.53 No.6

        Anode는 효소를 이용한 효소전극과 cathode는 PEMFC용 전극을 이용해 효소연료전지를 구동하였다. 효소 anode는 graphite 분말과 효소로서 글루코스 산화제, 전자매개체로 ferrocene을 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. Anode 제조조건을 변화시키며 성능을 측정해 효소 anode 제조 최적조건을 찾았다. 효소 anode 압축 시 최적 압력은 8.89 MPa이고, 효소 anode의 graphite 성분비가 60%일 때 최고의 출력밀도를 나타냈다. Anode 기질 용액의 최적glucose 농도는 1.7mol/l이었다. 효소 anode는 Nafion 용액에 1초, 2회 침지에 의해 안정화되었다. Enzyme fuel cells were operated with cells composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase(Gox) as a enzyme and ferrocene as a redox mediator, and then coated with Nafion ionomer solution. Performances of enzyme unit cell were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 8.89MPa for enzyme anode pressing process. Highest power density was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7 mol/l in anode substrate solution. The enzyme anode was stabilized by two times of deeping in Nafion solution for 1 sec.

      • KCI등재

        NaBH4 가수분해 반응기 소재로서 알루미늄 합금의 특성 연구

        정현승 ( Hyeon Seong Jung ),오성준 ( Sung June Oh ),정재진 ( Jae Jin Jeong ),나일채 ( Il Chai Na ),추천호 ( Cheun Ho Chu ),박권필 ( Kwon Pil Park ) 한국화학공학회 2015 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.53 No.6

        NaBH4 가수 분해용 경량반응기의 재질로서 알루미늄 합금을 검토하였다. 알루미늄은 알칼리에 용해되는데, NaBH4반응 용액중에 안정화제로 NaOH가 포함되어 있다. 알루미늄의 부식 속도를 낮추기 위해서 NaOH 농도를 낮추면 저장중에 NaBH4가 손실된다. 그래서 최적의 NaOH 농도를 결정할 때 알루미늄 부식과 NaBH4 안정화를 모두 고려해야한다. NaBH4 안정화와 알루미늄 부식속도는 수소발생속도에 의해 측정하였다. NaBH4 안정화는 20~50 oC에서 알루미늄 부식속도는 60~90 oC 온도에서 실험하였다. 알루미늄 부식과 NaBH4 안정화를 모두 고려한 최적의 NaOH농도는 0.30 wt% 였다. 알루미늄 합금 6061를 사용해 반응기 온도 80~90 oC에서 NaOH 0.3 wt%로 200분간 반응을 진행하였다. Aluminum alloy was examined as a material of low weight reactor for hydrolysis of NaBH4. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in NaBH4 solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of NaBH4 during storage of NaBH4 solution. Therefore stability of NaBH4 and corrosion of aluminum should be considered in determining the optimum NaOH concentration. NaBH4 stability and corrosion rate of aluminum were measured by hydrogen evolution rate. NaBH4 stability was tested at 20~50 oC and aluminum corrosion was measured at 60~90 oC. The optimum concentration of NaOH was 0.3 wt%, considering both NaBH4 stability and aluminun corrosion. NaBH4 hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at 80~90 oC.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼