RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Legumin Accumulation in Endoplasmic Reticulum Cisternae at Early Stage of Seed Development and Protein Body Transformation in Pea Cotyledon Cells

        정병갑,이선희,Jeong, Byung-Kap,Lee, Sun-Hee Korean Society of Electron Microscopy 2001 Applied microscopy Vol.31 No.4

        Immunoelectron microscopy of storage protein at early stage of seed development showed legumin was firstly accumulated protein in between endoplasmic reticulum (ER) cisternae, and these accumulates were differentiated into protein body (PB) by transformation at later stage. Thin sections of pea cotyledons during the later stages of seed maturation showed three morphologically different types of protein bodies. One of these, presented as rough-surfaced cisternae with terminal dilations, which contained protein deposits and were often found interdigitated between stacks of rough endoplasmic reticulum. Conventional electron microscopy at earlier stages of cotyledon development showed this protein body type initially developed from the rough ER. This transformation of endoplasmic reticulum into a protein body is believed to represent a new pathway of protein body development. 완두 종자 발달의 이른 시기에 특징적으로 조면 소포체 내강에 단백질이 축적되는데 이 단백질에 대한 전자현미경적 면역세포 화학적 반응을 실시한 결과 legumin으로 확인되었다. 이 단백질은 소포체 내강에 점점 축적되고 소포체 끝이 부풀어서 단백과립으로 발달하였다. 완두의 단백과립 발달 과정은 3가지 유형이 확인 되었는데, 단백질 저장 액포의 분절에 의해서 형성된 제 1형 단백과립, 가장자리에 단백질이 축적된 단백질 저장 액포의 budding에 의해서 형성된 제 2 형 단백과립, 그리고 단백질 저장 소포체의 끝이 부풀어서 형성된 제 3형 단백과립으로 구분되었다. 제 3형 단백과립은 수정 후 $23\sim25$일 사이의 짧은 기간에 급격하게 발달되어 자엽세포를 가득차게 만드는 것으로 확인 되었으며, 이러한 유형은 지금까지 알려지지 않은 새로운 단백과립 발달과정으로 생각된다.

      • KCI등재

        Fine Structural Study of Pollen Wall Development at Late Stage of Microsporogenesis in Panax ginseng

        정병갑,Jeong, Byung-Kap Korean Society of Electron Microscopy 2005 Applied microscopy Vol.35 No.4

        인삼의 소포자 발달에 따라 화분벽의 형성과정을 밝히고자 소포자 4분자 시기부터 화분이 성숙되기까지의 전 과정을 투과 및 주사 전자현미경으로 관찰하였다. 화분벽의 발달은 감수분열이 끝나고 소포자 4분자가 callose에 둘러싸여 있을 때 시작된다. 화분벽 발달 초기에는 원형질막이 두터워지고 구불구불해지며 원형질막 바깥쪽에 섬유성 구조물이 나타나기 시작하고 이 섬유성 구조물은 점점 뚜렷하게 나타나고 premexine으로 발달한다. 원형질막의 함입으로 형성된 돌출부와 premexine이 연결되어 단간이 발달하고 성숙화분에서는 endexine에 일시적으로 흰색의 선이 관찰되었다. 표벽발달이 완료되면 hypertrophic Golgi에서 형성되는골지소낭에 의하여 내벽이 발달하고 발아구 부위에서는 내벽이 비후되어 나타났다. 성숙한 인삼화분은 3구형 화분으로서 약 $20{\mu}m$ 크기이며 표벽무늬는 세망상형을 나타내었다. The ontogeny of pollen wall in Panax ginseng was studied with transmission and scanning electron microscopy from early tetrad stage until pollen maturity. Initial indication of exine development is undulation of plasma membrane for the preparation of bacular mound. The first recognizable structure of the pollen wall is the cellulosic primexine which is formed outside of the plasma membrane while microspore tetrads are still surrounded by callose wall. As development proceeds, foot-layer and baculum differentiation, callose dissolution and exine formation were progressed. During this process, sporopollenin is deposited into the exine, and then endexine development was followed. The intine, innermost pollen wall layer, is developing form hypertrophic Golgi vesicles. The thickness of exine is very even on all along the pollen wall, but intine thickness of apertural region is thicker than that of nonapertural region. Mature pollen of ginseng is $20{\mu}m$ in size, tricolpate and shows fine reticulate sculpturing.

      • KCI등재

        Terminal Dilation and Transformation of the Protein-filled ER to Form Protein Bodies in Pea (Pisum sativum L. var, exzellenz) Cotyledons

        정병갑,Jeong, Byung-Kap Korean Society of Electron Microscopy 1999 Applied microscopy Vol.29 No.4

        완두 종자에 축적되는 저장물질은 주로 전분과 단백질로서 이러한 저장물질 때문에 고정이나 전자현미경 관찰시료를 제작하기가 쉽지 않다. 따라서 자엽을 얇게 절편을 만들고 효소를 사용하여 단일세포로 분리한 다음 고정하여 관찰하였다. 완두의 저장단백질이 축적되는 단백질 저장 액포는 종자발달의 이른 시기에 기존의 액포를 둘러싸고 발달하게 되므로서 액포는 수축되고 단백질 저장 액포는 점점 발달하여 그 가장자리에 단백질 덩어리가 축적되게 된다. 이와는 별도로 종자발달의 이른 시기에 조면소포체의 내강에 전자밀도가 높은 단백질이 축적되기 시작하여 늦은 시기에 이 소포체의 끝이 부풀어서 구형의 단백과립으로 발달하였다. 완두종자의 저장단백질은 주로 vicilin과 legumin으로서 단백과립에 대한 면역세포화학적 방법으로 확인한 결과 vicilin은 세포질에 발달된 작은 단백과립과 단백질 저장액포의 가장자리에 축적된 단백질 덩어리에 모두 반응하였으나 legumin은 세포질의 단백과립에만 반응하였다. 또한 소포체에 존재하는 단백질인 Bip은 단백질 저장액포에 축적된 단백질 덩어리의 안쪽 가장자리에만 반응하였다. 이는 단백질이 활발하게 축적되고있는 시기에 특징적으로 작용하는 Bip의 기능과 관련되는 것으로 사료된다. Accumulations of the storage proteins in protein storage vacuole and the differentiation of protein bodies from protein-filled ER in developing pea cotyledons have been investigated using conventional and immunoelectron microscopy. To improve the fixation quality, single cells separated enzymatically from sliced cotyledons were used. At early stages of seed development osmiophilic protein accumulates in rER lumen were observed quite often. This protein-filled ER cisternae were differentiated into cytoplasmic protein bodies at late stage by the process called terminal dilations which have been considered a principal route of the formation of cytoplasmic protein bodies somewhat later in seed maturation. Immunocytochemical labellings of the vicilin and legumin show that presence of vicilin on both of the cytoplasmic PB and PD, but limited presence of legumin only on the cytoplasmic PB at intermediate stage of seed development. Immunogold labellings of Bip, ER retention protein, were observed on the inner periphery of protein deposits in protein storage vacuole. This result was regarded that Bip can recognize and retrieve misfolded protein during active accumulation of storage protein to the PD in PSV.

      • KCI등재

        Immunocytochemical Investigation on the Intracisternal Accumulations of Storage Protein in Pea Cotyledon Cells

        정병갑,박홍덕,Jeong, Byung-Kap,Park, Hong-Duok Korean Society of Electron Microscopy 2001 Applied microscopy Vol.31 No.2

        완두 자엽세포에 대한 저장단백질 과립의 발달은 단백질 저장 액포의 가장자리에 축적된 단백질의 fragmentation에 의해서 이루어지는 것으로 알려져 왔다. 그러나 최근 이 외에도 terminal dilation, transformation, denovo development등의 독립적인 과정이 각각 다른 시기에 관찰되므로서 단백과립의 발달은 이러한 여러 과정이 모두 나타나는 복합과정임이 알려졌다. 이러한 과정과는 별도로 종자발달의 이른시기에 소포체 내강에 축적되는 저장단백질과 여기서 발달하는 단백과립에 대하여 규명하고자 발달중인 종자의 자엽으로부터 단일 세포를 얻어서 면역세포 화학적 반응을 실시하였다. 그 결과 종자발달의 이른 시기에는 legumin이, 중간시기 이후 에는 vicilin이 축적되므로서 단백질이 축적된 소포체가 단백과립으로 발달하는 것으로 나타났다 소포체 내강에 존재하는 단백질인 $\alpha-Tip$은 비교적 늦은시기에, toneplast membrane protein인 PPase는 이른시기에 각각 면역 세포화학적 반응이 관찰되었다. In 1980s, the fragmentation or subdivision of protein deposits at the periphery of protein storage vacuole was suggested as the only route of PB development in pea cotyledon cells. Since then, other independant processes such as terminal dilation , transformation and de novo development have been discussed as alternative routes for PB development, and today, these multiple mechanisms of PB development are accepted as a result of active investigations. For analysis of the protein accumulations in the ER cisternae during seed development, immunocytochemical gold labellings were applyed on the single cells separated by enzymatic digestion from cotyledon tissue. Anti-legumin labellings at the early stage, and anti-vicilin labellings at the intermediate stage were observed on the protein-filled ER. The $\alpha-Tip$, which is the ER retention protein, was labelled somewhat at late stage, and PPase, a sort of tonoplast membrane protein, was labelled at early stage.

      • SCOPUSKCI등재

        인삼 ( Panax ginseng C. A. Meyer ) 의 도관요소

        정병갑(Byung Kap Jeong),박종덕(Jong Duk Park),유성철(Seong Cheol Yu),김우갑(Woo Kap KIm) 한국식물학회 1988 Journal of Plant Biology Vol.31 No.3

        Vessel elements in lateral root, tap root, transition region, stem and mid vein of 1-year old, 3-year old and 5-year old ginseng (Panax ginseng C.A. Meyer) are studied with light microscope to clarify the distribution and differentiation of several kinds of vessel elements. Vessel elements are classified into five types such as ring vessel, spiral vessel, scalariform vessel, reticulate vessel and pitted vessel according to the secondary thickenings of cell wall. All of the five types are not observed in each organ, but diverse kinds of vessels are present in stem and mid vein compared with the underground organs such as tap root and lateral root. The length of vessel elements is longest (680 ㎛) in stem and shortest (143 ㎛) in tap root. The diameter of vessel elements is 19.0 ㎛ in tap root and the angle of perforation plate comes under 22˚-60˚. The degree of differentiation of vessel elements according to the length, diameter and angle of perforation plate of vessel elements is highest in tap root regardless of the age of ginseng. Three types of perforation plate such as scalariform, intermediate type of simple and scalariform, and simple perforation plate are observed. The vascular tracheids are characteristically observed in mid vein of 1-year old ginseng, and in transition region of 3 and 5-year old ginseng.

      • KCI등재

        Ultrastructural Study of Programmed Cell Death of Tapetum in Panax ginseng

        Byung-Kap Jeong(정병갑) 한국생명과학회 2009 생명과학회지 Vol.19 No.8

        융단조직은 약실 내에서 발달하는 소포자에 영양분을 공급하고 퇴화되는 조직으로써, 소포자 4분자 시기에 최대로 발달하고 화분벽에 포분질에 축적된 후 프로그램 세포사가 일어남으로써 세포가 죽게 되고 융단조직 전체가 퇴화된다. 액포가 융합되므로써 프로그램 세포사가 시작되고 세포질응축, 핵질 분절 등이 뒤따라 일어난다. 지질 덩어리는 비교적 늦은 시기에 퇴화되며 orbicular body는 가장 늦게까지 남아 있게 된다. 융단세포의 프로그램세포사 전 과정 중에서 세포벽은 액포에서 기원하는 가수분해 효소에 비교적 안정적이므로 가장 늦게 퇴화되는 것으로 확인되었다. Tapetum is the tissue in which nutrients are supplied to the developing microspore in angiosperm anther. At tetrad stage of microspore, the tapetal cells show maximum development, but they began to be degenerated by apoptotic programmed cell death (PCD) after sporopollenin accumulation in the pollen wall. The initial step of PCD was observed as vacuolar fusion. After that, cytoplasmic condensation and nuclear fragmentation followed. Lipid droplets are degenerated at a relatively late stage of PCD, and orbicular bodies are the last remains in tapetal cells. The cell wall was relatively resistant against vacuolar enzymes in tapetal cells; it was considered the last structure remaining during programmed cell death of tapetum in ginseng anther.

      • SCOPUSKCI등재
      • KCI등재

        인삼(Panax ginseng C.A. Meyer) 배유세포의 Protein Body 형성에 관한 연구

        유성철,정병갑,김우갑,Yu, Seong-Cheol,Jeong, Byung-Kap,Kim, Woo-Kap 한국현미경학회 1988 Applied microscopy Vol.18 No.2

        The developmental processes of the protein body are studied on endosperm cells of Panax ginseng during seed maturation periods. The spherosome, mitochondria, rough endoplasmic reticulum, and ribosome are observed and then are gradually increased in early endosperm cells. Protein body developed from vesicles produced by the rough endoplasmic reticulum and was formed at the enlarged ends of rough endoplasmic reticulum. Also, vacuole-like protein body was observed in associated with rough endoplasmic reticulum. Golgi complex is observed in associated with vacuole and its vesicles containing proteinaceous granules moved and accumulated to the vacuole. Proteinaceous granules are deposited in the spherical or oval shaped vacuole and gradually, vacuole is surrounded by the multi-membranous structure. Rough endoplasmic reticulum, ribosome, Golgi complex, and vacuole are observed in associated with protein body formation.

      • SCOPUSKCI등재

        인삼 ( Panax ginseng C. A. Meyer ) 종피의 (種皮) 구조 및 분화에 관한 연구

        김우갑(Woo Kap Kim),김은수(Eun Soo Kim),정병갑(Byung Kap Jeong) 한국식물학회 1986 Journal of Plant Biology Vol.29 No.4

        Structure and differentiation mechanism of the seed coat of Panax ginseng are studied with light and electron microscopes to clarify the developmental processes of seed coat and the structural changes during the differentiation of the seed. The seed coat of ginseng is differentiated from the inner cell layers of ovary wall, which can be compared with the seed coat differentiated from integument(s) in other plants. The single integument is differentiated into endothelium, which is degenerated to one layer of 4 ㎛ in thickness, composed of remants of cell wall components in fully ripened seed. The ripened seed coat is composed of three layers; fringe layer, inner layer and palisade layer, and all of them are crossed at right angles with one another. This may be the cause of protection of the kernel from other mechanical injuries. The thickness of fully ripened seed coat is about 300∼600 ㎛, and arrangements of sclereids are irregular. However the raphe region of seed coat is thin about 200 ㎛ in thickness and sclereids in that region are arranged regularly. This is the important cause for the cleavage of the seed coat during post-maturation process. The vascular bundles on the raphe are still remaining after sarcocarps are removed, and one of the branches of vascular bundles entered into the seed coat through the hilum and extended to chalazal region. During post-maturation process, the supply of water being necessary for growth of embryo may be accompolished by the vascular bundles entered into the seed coat through the opened hilum.

      • SCIESCOPUSKCI등재

        인삼(Panax ginseng)에 존재하는 Calcium Oxalate 결정체의 분포, 유형 및 미세구조

        이상욱(Sang-Wook Lee),권우생(Woo-Saeng Kwon),정병갑(Byung-Kap Jeong) 고려인삼학회 2002 Journal of Ginseng Research Vol.26 No.4

        Crystalline calcium oxalate occur throughout nearly all plants species in five major forms; styloids, druses, raphids, prisms and sands. These crystals are known to be distributed in specific tissue such as cortex, xylem, phloem, cambium and epidermis. This research was undertaken to identify the occurrence, type, location and ultrastructure of druse crystals in Panax ginseng. In situ visualization, conventional light microscopy, histochemistry and scanning electron microscopy were applied for these purposes. Druse crystals in ginseng were identified as calcium oxalate by silver nitraterubeanic acid histochemistry. Calcium oxalate crystals are observed in nearly all plant organs such as leaf, petiole, peduncle, stem, rhizome, tap root and lateral root except fine root. Most frequent observation of crystals in the leaf and rhizomes were noticed. Three different types of calcium oxalate druse crystals were identified by scanning electron microscopy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼