RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        조선후기 천문학자 이덕성의 생애와 천문활동

        안영숙,민병희,서윤경,이기원,AHN, YOUNG SOOK,MIHN, BYEONG-HEE,SEO, YOON KYEONG,LEE, KI-WON 한국천문학회 2017 天文學論叢 Vol.32 No.2

        The life and astronomical activity of Lee Deok-Seong (李德星, 1720-1794) was studied using various historical sources, including the astronomical almanac, Seungjeongwon-Ilgi (Daily records of Royal Secretariat of Joseon dynasty), and the Gwansang-Gam's logbooks during Joseon dynasty (A.D. 1392-1910). We present the results of the study including the following main findings. First, from the investigation of Lee's family tree, we find that a number of his relatives were also astronomers, notably Samryeok-Gwan (三曆官, the post of calendrical calculation). Second, we find that he took part in the compilation of an annual astronomical almanac over a period of at least 16 years. His major achievements in the astronomy of the Joseon dynasty were to establish a new method of calendar-making calculation and to bring astronomical materials to the Joseon court through a visit to China. The Joseon dynasty enforced the Shixianli (時憲曆, a Chinese calendar made by Adam Shall) in 1654 without fully understanding the calendar. So an astronomer and an envoy were dispatched to China in order to master the intricacies of the calendar and to learn as much of Western science as was available in that time and place. Lee Deok-Seong worked at the Gwansang-Gam (觀象監, Royal Astronomical Bureau) during the reigns of King Yeongjo (英祖) and Jeongjo (正祖). As best as we can ascertain in relation with the calculations in the Shixian calendar, Lee visited China four times. During his trips and interactions, he learned a new method for calendar-making calculations, and introduced many Western-Chinese astronomical books to Joseon academia. Lee greatly improved the accuracy of calendrical calculations, even while simplifying the calculation process. With these achievements, he finally was promoted to the title of Sungrok-Daebu (崇祿大夫), the third highest grade of royal official. In conclusion, history demonstrates that Lee Deok-Seong was one of the most outstanding astronomers in the late-Joseon dynasty.

      • SCIESCOPUSKCI등재

        조선시대(1392-1910) 연력표

        안영숙,한보식,심경진,송두종,AHN YOUNG SOOK,HAN BO SIK,SIM KYUNG JIN,SONG DOO JONG 한국천문학회 2000 Journal of The Korean Astronomical Society Vol.33 No.3

        We arrange Korean ancient calendar with Solar calendar during Choseon Dynasty(A.D. 1392-1910). In this period, we have one representable history books and several books, and most of information for date are found from them, ChoseonWangjosillok(조선왕조실록) and Jeungbomunheonbigo(증보문헌비고), etc. In those books many astronomical data and calendar information data are contained, so we can make chronological tables. Most of the data are arranged based on those several books, and for doubtable data are identified from eclipse, historical events and lunar phase calculations etc. We find that arranged chronological tables during Choseon Dynasty are similar to that of China and somewhat different from that of Japan. In addition we summarize all misrecorded date data in ChoseonWangjosillok

      • KCI등재
      • KCI등재

        한국 역서 데이터베이스 구축 및 내용 분석

        이기원,안영숙,민병희,신재식,Lee, Ki-Won,Ahn, Young-Sook,Mihn, Byeong-Hee,Shin, Jae-Sik 한국천문학회 2011 天文學論叢 Vol.26 No.1

        Korea Astronomy and Space Science Institute (KASI) has constructed online database of the Korean Astronomical Almanac as a part of the 'Knowledge and Information Business Project 2009' supported by the Ministry of Knowledge Economy. Throughout this project, KASI provides both digitized images and extracted text from the almanac covering approximately 240 years. The primary purpose of this paper is to serve as a reference for users of the almanac database. Hence, we introduce the calendar history and kinds of the astronomical almanac used in Korea, and explain the contents of the almanacs according to its appearance time. We also briefly mention the steps employed in constructing the database system and Web site. Since ancient times, astronomical almanacs have been an essential part of daily life. We, therefore, believe that the astronomical almanac database constructed by KASI will prove its usefulness in various fields, and particularly in the study of historical astronomy.

      • KCI등재

        고려시대(918-1392) 연력표 작성

        양홍진,안영숙,한보식,심경진,송두종,YANG HONG JIN,AHN YOUNG SOOK,HAN BO SIK,SIM KYUNG JIN,SONG DOO JONG 한국천문학회 1999 天文學論叢 Vol.14 No.2

        We arranged ancient Korean calendar during Koryo dynasty (A.D. 918-1392) according to Julian calendar. We used two representative history books, Koryo-sa (高麗史) and Koryo-sa Jeolyo (高麗史節要), which contain thea stronomical and the historical records chronologically. We found all 19,727 ganji dates(日辰) and 102 misrecoreded ganji dates in two books. Most of the data are arranged based on those two books, and doubtful data are identified using the eclipse, historical events and lunar phase calculations etc. Although Korea, China, and Japan were using basically the same calendar since ancient times, their calendars show some significant disagreement. We found that arranged chronological tables during Koryo dynasty were, in some cases, different from those of China and Japan.

      • KCI등재

        참조표준 등록을 위한 천문역법 자료 분석

        양홍진,안영숙,이기원,Yang, Hong-Jin,Ahn, Young-Sook,Lee, Ki-Won 한국천문학회 2008 天文學論叢 Vol.23 No.2

        Korea Astronomy and Space Science Institute (KASI), direct decendant of Korea National Astronomy Observatory, has been publishing Korean Astronomical Almanac since in 1976. The almanac contains essential data in our daily lives such as the times of sunrise, sunset, moonrise, and moonset, conversion tables between luni-solar and solar calendars, and so forth. So, we are planning to register Korean astronomical almanac data for national Standard Reference Data(SRD), which is a scientific/technical data whose the reliablity and the accuracy are authorized by scientific analysis and evalution. To be certificated as national SRD, reference data has to satisfy several criteria such as traceability, consistency, uncertainty, and so on. Based on similarity among calculation processes, we classified astronomical almanac data into three groups: Class I, II, and III. We are planning to register them for national SRD in consecutive order. In this study, we analyzed Class I data which is aimed to register in 2009, and presented the results. Firstly, we found that the traceability and the consistency can be ensured by the usage of NASA/JPL DE405 ephemeris and by the comparsion with international data, respectively. To evaluate uncertainty in Class I data, we solved the mathematical model and determined the factors influencing the calculations. As a result, we found that the atmospheric refraction is the main factor and leads to a variation of ${\pm}16$ seconds in the times of sunrise and sunset. We also briefly review the histories of astronomical almanac data and of standard reference data in Korea.

      • KCI등재후보

        고려시대 금석문에 나타난 연호와 역일 기록 분석

        이기원,안영숙,민병희,LEE, KI-WON,AHN, YOUNG SOOK,MIHN, BYEONG-HEE 한국천문학회 2016 天文學論叢 Vol.31 No.1

        We investigate the records related to the reign style and the calendar day from the epigraphs of the Goryeo dynasty (918 - 1392) in Korea in order to verify and supplement the sexagenary cycle data of the first day in the lunar month of the dynasty. The database of the National Research Institute of Culture Heritage contains a rubbed-copy image, transcription statement, and translation statement for Korean epigraphs as well as 775 epigraphs corresponding to the Goryeo dynasty. The epigraph records are valuable in that, during this time, they were written differently from other historical literature such as the Goryeosa (History of the Goryeo Dynasty), which was compiled in the next dynasty. We find that the Goryeo dynasty, in general, had adopted the reign styles of Chinese dynasties at that time. We also find 159 calendar day records all showing good agreement with the work of Ahn et al. except for dozens of records. Through this study, we can verify the reign styles and the calendar days of the Goryeo dynasty.

      • KCI등재

        한국의 삼복 일자 분석

        민병희,이기원,안영숙,안상현,이용삼,Mihn, Byeong-Hee,Lee, Ki-Won,Ahn, Young Sook,Ahn, Sang-Hyeon,Lee, Yong Sam 한국천문학회 2014 天文學論叢 Vol.29 No.1

        Sambok (三伏, Three Hottest Days) is the common designation of Chobok (初伏, Early Hot Day), Jungbok (中伏, Middle Hot Day), and Malbok (末伏, Late Hot Day), and widely known to be one of the Korean folk customs. Hence, Sambok is notated in Manseryeok (Ten Thousand-Year Almanac) and in the annual astronomical almanac published by Korea Astronomy and Space Science Institute. In this paper, we investigate the changes of Sambok in Korea based on various documents such as Joseonwangjosilok (朝鮮王朝實錄, Annals of the Joseon Dynasty), Jeungbo-Jakryeoksik (增補作曆式, The Supplement of Manual for Calendar Making), astronomical almanacs, and so forth. According to Jeungbo-Jakryeoksik preserved in Kyujanggak Institute for Korean Studies, Chobok and Jungbok are defined as the third and fourth Gyeongil (庚日, The Day Starting with the Seventh Heavenly Stems in Sexagenary Cycles Assigned to Each Day) after the summer solstice, respectively, and Malbok is the first Gyeongil after Ipchu (Enthronement of Autumn). However, if the summer solstice is Gyeongil, then the third Gyeongil counting from the solstice becomes Chobok. Malbok depends on the time of Ipchu. Ipchu itself becomes Malbok if the time of Ipchu is in the morning, or next Gyeongil becomes Malbok if it is the afternoon. On the other hand, Malbok is defined as Ipchu itself regardless of its time according to Chiljeongbobeob (七政步法, Calculating Method for Sun, Moon, and Five Planets), Chubocheobryeo (推步捷例, Quick Examples for Calendrical Calculations), and so on. To verify the methods used to determine Sambok, we examined the record in the extant almanacs during the period of 1392 to 2100 for which the summer solstice or Ipchu is Gyeongil. As a result, we found a periodicity that if the time of Ipchu is in the morning, in general, the time is in the afternoon after two years and then is back into in the morning after nineteen years, i.e., the 2 + 19 years periodicity. However, we found the 2 + 17 years periodicity in some years. We also found that the Chobok method of Jeungbo-Jakryeoksik has been used since 1712, the thirty-eighth reign of King Sukjong (肅宗). In addition, we supposed that Malbok had been determined by the method like Chubocheobryeo since either 1846, the twelfth reign of King Heonjong (憲宗), or 1867, the fourth reign of King Gojong (高宗). At present, these methods of Sambok are customarily used without any legal basis. We, therefore, think that this study will help conventionalize the method defining Sambok in the future.

      • KCI등재

        조선시대 간의대의 배치와 척도에 대한 추정

        김상혁,민병희,안영숙,이용삼,Kim, Sang-Hyuk,Mihn, Byeong-Hee,Ahn, Young-Sook,Lee, Yong-Sam 한국천문학회 2011 天文學論叢 Vol.26 No.3

        Since the thirteenth century, large scale facilities and various instruments for astronomical observation were built and installed in East Asia. During the Yuan Dynasty, S. ti.ntai (Beijing astronomical observatory in the Yuan Dynasty, 司天臺) was built in Beijing in 1279. Various astronomical instruments, including Ganui (Jianyi, simplified armillary sphere, 簡儀), Yang-yi (upward hemisphere, 仰儀) and Gyupyo (gnomon, 圭表) were installed in this observatory. These astronomical instruments were modified and improved by researchers of the Joseon Dynasty. Ganuidae (Joseon astronomical observatory, 簡儀臺) was built in Gyeongbokgung (or Gyeongbok palace, 景福宮), Seoul. Its scale was 31 Cheok (Korean feet in the Joseon Dynasty, 尺) in height, 47 Cheok in length and 32 Cheok in width. Lee, Cheon (李?, 1376~1451), a responsible leader of Ganuidae project, set up various astronomical instruments with his colleagues. Ganui and Jeongbangan (direction-determining board, 正方案) were installed at the top of this observatory. Gyupyo was installed at the west side of this observatory and Honui (armillary sphere, 渾儀) and Honsang (celestial globe, 渾象) were installed in a small pavilion which was located next to Gyupyo. A decade after installation, this observatory was moved to the north-west side of the palace but almost destroyed during Japanese invasion of Korea in 1592 except Ganuidae. We have analyzed documents about Ganuidae and investigated Chinese remains of astronomical observatories and artifacts of astronomical instruments. In this paper, we suggest the appearance, structure, arrangement and scale of Ganuidae, which are expected to be used for the restoration of Ganuidae at some day in the near future.

      • KCI등재

        조선전기 대규표의 구조에 대한 연구

        민병희,이기원,김상혁,안영숙,이용삼,Mihn, Byeong-Hee,Lee, Ki-Won,Kim, Sang-Hyuk,Ahn, Young-Sook,Lee, Yong-Sam 한국천문학회 2012 天文學論叢 Vol.27 No.2

        In this paper, we study the structure of the Daegyupyo (大圭表, Large Gnomon) of the early Joseon dynasty. A Gyupyo (圭表, Gnomon that is Guibiao as pronounced in Chinese) is composed of a Pyo (表, Biao as pronounced in Chinese) making a shadow and a Gyu (圭, Gui as pronounced in Chinese) measuring its length. It is known that the Daegyupyo with the 40-feet height was constructed between the sixteenth to seventeenth year of the King Sejong reign (1444 - 1445) on the basis of the record of Yuanshi (元史, the History of the Yuan Dynasty). By analyzing historical documents such as Joseonwangjosillok (朝鮮王朝實錄, the Annals of the Joseon Dynasty), Yuanshi, and Jegaryeoksangjip (諸家曆象集, a work written by Sunji Lee), we found a possibility that the Ji (池, a pond) on the Gyu was located in the north side of the Pyo. This structure is different from that in previous studies, but is in a good agreement with that of the 40-feet Guibiao remaining in Dengfeng (登封) of China. Regarding to the Hoengyang (橫梁, cross-bar), we suggest that it was set up by double 5-feet supporting arms apart from the north tip of the Pyo in the radial direction. The 3:4:5 ratio in a rectangular triangle was used to place the Heongyang on the top of the Pyo at a distance of 4-feet (3-feet) in the vertical (horizontal) direction. We also discuss the structural problem when the Hoengyang is positioned apart from the top of the Pyo by supporting arms. In conclusion, we think that this study should be useful in restoring the Daegyupyo of the Joseon dynasty.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼