RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Nanodiamond enhanced mechanical and biological properties of extrudable gelatin hydrogel cross-linked with tannic acid and ferrous sulphate

        아미타바 바타차리아,V. N. Karthikai Priya,Ji-hyeon Kim,Mst Rita Khatun,R. Nagarajan,노인섭 한국생체재료학회 2022 생체재료학회지 Vol.26 No.3

        Background: The requirements for cell-encapsulated injectable and bioprintable hydrogels are extrusion ability, cell supportive micro-environment and reasonable post-printing stability for the acclimatization of the cells in the target site. Detonation nanodiamond (ND) has shown its potential to improve the mechanical and biological properties of such hydrogels. Enhancing the performance properties of natural biopolymer gelatin-based hydrogels can widen their biomedical application possibilities to various areas including drug delivery, tissue engineering and 3D bioprinting. Method: In this study, natural cross-linker tannic acid (TA) is used along with ferrous sulphate (FS) to optimize the swelling and disintegration of extrudable and 3D printable gelatin hydrogels. The amounts of TA and FS are restricted to improve the extrusion ability of the gels in 3D printing. Further, ND particles (detonation type) are dispersed using twin screw extrusion technology to study their effect on mechanical and biological properties of the 3D printing hydrogel. Results: The improved dispersion of ND particles helps to improve compressive strength almost ten times and dynamic modulus three times using 40 mg ND (2% w/w of gelatin). The surface-functional groups of detonation ND also contributed for such improvement in mechanical properties due to higher interaction with the hydrogel matrix. The stability of the hydrogels in water was also improved to 7 days. Four times improvement of the cell growth and proliferation was observed in ND based hydrogel. Conclusion: The cell-supportive nature of these moderately stable and extrudable ND dispersed gelatin hydrogels makes them a good candidate for short term regenerative applications of cell-encapsulated injectable hydrogels with better mechanical properties.

      • KCI등재

        Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering

        아미타바 바타차리아,Gopinathan Janarthanan,Taeyang Kim,Shiva Taheri,Jisun Shin,Jihyeon Kim,Hyun Cheol Bae,한혁수,노인섭 한국생체재료학회 2022 생체재료학회지 Vol.26 No.4

        Background: The gelatin-methacryloyl (GelMA) polymer suffers shape fidelity and structural stability issues during 3D bioprinting for bone tissue engineering while homogeneous mixing of reinforcing nanoparticles is always under debate. Method: In this study, amorphous calcium phosphates micro/nanoparticles (CNP) incorporated GelMA is synthesized by developing specific sites for gelatin structure-based nucleation and stabilization in a one-pot processing. The process ensures homogenous distribution of CNPs while different concentrations of gelatin control their growth and morphologies. After micro/nanoparticles synthesis in the gelatin matrix, methacrylation is carried out to prepare homogeneously distributed CNP-reinforced gelatin methacryloyl (CNP GelMA) polymer. After synthesis of CNP and CNP GelMA gel, the properties of photo-crosslinked 3D bioprinting scaffolds were compared with those of the conventionally fabricated ones. Results: The shape (spindle to spherical) and size (1.753 μm to 296 nm) of the micro/nanoparticles in the GelMA matrix are modulated by adjusting the gelatin concentrations during the synthesis. UV cross-linked CNP GelMA (using Irgacure 2955) has significantly improved mechanical (three times compressive strength), 3D printability (160 layers, 2 cm self-standing 3D printed height) and biological properties (cell supportiveness with osteogenic differentiation). The photo-crosslinking becomes faster due to better methacrylation, facilitating continuous 3D bioprinting or printing. Conclusion: For 3D bioprinting using GelMA like photo cross-linkable polymers, where structural stability and homogeneous control of nanoparticles are major concerns, CNP GelMA is beneficial for even bone tissue regeneration within short period.

      • KCI등재

        Progress in biomechanical stimuli on the cell-encapsulated hydrogels for cartilage tissue regeneration

        Shiva Taheri,Hanieh Sadat Ghazali,Zahra Sadat Ghazali,아미타바 바타차리아,노인섭 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Background : Worldwide, many people suffer from knee injuries and articular cartilage damage every year, which causes pain and reduces productivity, life quality, and daily routines. Medication is currently primarily used to relieve symptoms and not to ameliorate cartilage degeneration. As the natural healing capacity of cartilage damage is limited due to a lack of vascularization, common surgical methods are used to repair cartilage tissue, but they cannot prevent massive damage followed by injury. Main body : Functional tissue engineering has recently attracted attention for the repair of cartilage damage using a combination of cells, scaffolds (constructs), biochemical factors, and biomechanical stimuli. As cyclic biomechanical loading is the key factor in maintaining the chondrocyte phenotype, many studies have evaluated the effect of biomechanical stimulation on chondrogenesis. The characteristics of hydrogels, such as their mechanical properties, water content, and cell encapsulation, make them ideal for tissue-engineered scaffolds. Induced cell signaling (biochemical and biomechanical factors) and encapsulation of cells in hydrogels as a construct are discussed for biomechanical stimulation-based tissue regeneration, and several notable studies on the effect of biomechanical stimulation on encapsulated cells within hydrogels are discussed for cartilage regeneration. Conclusion : Induction of biochemical and biomechanical signaling on the encapsulated cells in hydrogels are important factors for biomechanical stimulation-based cartilage regeneration.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼