RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        제주도(濟州道)에 분포(分布)하는 화산암류(火山岩類) 및 퇴적암류(堆積岩類)에 대(對)한 고지자기(高地磁氣) 연구(硏究)

        민경덕,원중선,황석연,Min, Kyung Duck,Won, Joong Sun,Hwang, Suk Yeon 대한자원환경지질학회 1986 자원환경지질 Vol.19 No.2

        Paleomagnetic and geological studies of volcanic and sedimentary rocks of Jeju Island have been carried out to determine the position of virtual geomagnetic pole(VGP), and to estimate the geological sequence and their age. As a result of paleomagnetic studies, the reversal polarities are measured in the Sanbangsan trachyte and Hwasun formation, and the normal are the rest. In case of normal polarity, the mean values of declination and inclination are $2.3^{\circ}$ and $48.4^{\circ}$, respectively, and the average value of VGP is $85.4^{\circ}N$ and $79.9^{\circ}W$. The locations of VGP's are coincident with those obtained from world-wide Plio-Pleistocene rocks. The Hwasun formation and Seongsan formation which have been known to be sedimented in the similar time in the 2nd-stage of volcanic eruption, possess reversal and normal polarities, respectively. This fact brings about the result that two formations should be separated in a sense of geological sequence. Consequently, the geological sequence of the 2nd-stage of volcanic eruption is Pyoseonri basalt-Seoguipo hawaiite-Hwasun formation-Seongsan formation-Jungmun hawaiite-Sanbangsan trachyte. Referring to the paleomagnetic studies and the previous and present geological studies, Seoguipo formation corresponds to the Gauss normal epoch, the 2nd-stage of volcanic eruption to Matuyama reversed epoch, and the 3rd-, 4th-, and 5th-stages to Brunhes normal epoch. Therefore, the Seoguipo formation is mostly sedimented during late Pliocene and/or presumably extended to the early Pleistocene. The rocks of the 2nd- to 5th-stage are formed later than this.

      • KCI등재

        중력탐사(重力探査)에 의(依)한 마산(馬山)-부산간(釜山間)의 지하구조(地下構造) 연구(硏究)

        민경덕,김정우,Min, Kyung Duck,Kim, Jeong Woo 대한자원환경지질학회 1987 자원환경지질 Vol.20 No.3

        The gravity measurement has been conducted at 69 points with an interval of about 1km along the national road between Masan and Busan through Kimhae to study on the subsurface geology and structure of Kyongsang basin. The Bouguer gravity anomalies were obtained from the observed gravity values, and interpreted by means of the Fourier-series method and Talwani method for 2-dimensional body. The depth of Conrad discontinuity is about 14.8km at the west end of survey line, and increases smoothly to about 13.6km at the east end. But it is uplifted by about 500m between Yangsan and Dongnae faults. The depth of the basement of Kyongsang basin is about 4.8km at the west end. It decreases gradually passing Masan, and reaches the maximum depth of 5.6km at the 15km east of Masan. Hereafter, it starts to increase to 4.3km at the east end. It is also uplifted by about 500m between Yangsan and Dongnae faults. The Bulgugsa granites which cause two low Bouguer gravity anomaly zones are distributed in the vicinity of Masan at depth of about 3.5km and Kimhae area at depth of about 5.3km. Diorite, granodiorite, aplite, and felsite are distributed with various depth of about 1~1.7km, and Jusasan andesitic rocks, except porphyritic one located at the west of Kimhae, are distributed with depth of about 1km. Three fracture zones associated with faults are located at the places where v-shaped Bouguer gravity anomalies are appeared.

      • KCI등재

        중력탐사(重力探査)에 의(依)한 경상층군내(慶尙層群內) 왜관(倭館)-포항간(浦項間)의 지하구조(地下構造) 연구(硏究)

        민경덕,정종대,Min, Kyung Duck,Chung, Chong Dae 대한자원환경지질학회 1985 자원환경지질 Vol.18 No.4

        The gravity measurement has been conducted at 113 stations with an interval of about 1km along the national road of about 120km running from Busangdong to Pohang through Waekwan, Daegu, Youngchun and Aankang. The subsurface geology and structure along the survey line is interpreted from Bouguer anomaly by applying Fourier method and Talwani method for two dimensional body. The mean depth of Moho discontinuity is 31.4km, and the depth decreases very slowly from inner continent toward east coast. The depth of Conrad discontinuity increases from 11km at the east coastal area to 17km at the inner continental area, and especially increases rapidly in the area between Waekwan to Busangdong. The depth of basement of Kyoungsang Basin inereases from near Waekwan toward Daegu upto about 4. 8km, and increases rapidly to reach the maximum depth of about 8.5km at 8km east of Daegu. But it starts to decrease from the place of 10km west of Youngchun, and is about 7.2km at Youngchun and about 6km at 6km east of Youngchun. The depth starts to increase smoothly beyond this point, and is 7km at 15km east of Youngchun. From this point, the depth starts to decrease again, and is about 3.8km at Ankang. The depth of basement of Pohang Basin is 500m at Pohang and about 650m at 5km west of Pohang. A massive granite body which is considered to be a part of Palgongsan Granite exposed at the depth of 1. 5km at 9km west of Youngchun. Another massive granite body is situated underneath the Pohang Basin at depth of 1.5 to 2km, and sedimentary rocks of Kyoungsang Group and volcanic rocks are distributed between Pohang Basin and this granite body. Finally, Yangsan Fault is identified at about 2.5km east of Ankang.

      • KCI등재

        전기비저항(電氣比抵抗) 탐사(探査)에 의한 포항분지(浦項盆地)와 장기분지의 경계규명(境界糾明)

        민경덕,윤혜수,문희수,이현구,이대하,Min, Kyung Duck,Yun, Hyesu,Moon, Hi-Soo,Lee, Hyun Koo,Lee, Dae-Ha 대한자원환경지질학회 1990 자원환경지질 Vol.23 No.2

        Geological and electrical resistivity surveys along the survey line of about 3 km between Kyungsangbukdo Youngilgun Hodong and Gwangmyungdong using by dipole-dipole electrode array method were carried out to examine the boundary and structural relationship between Tertiary Pohang and Janggi basins. Electrical resistivity data were interpreted qualitatively and quantitatively by means of pseudosection of apparent electrical resitivity distribution and finite difference method for two dimensional geologic structure model. The nearly vertical fault zone with low electrical resistivity value of 1-5 Ohm-m and widths of about 200m at the surface and 400 m at depth exists around 1.2 km west of national road between Ocheoneup and Yangbukmyun. Mudrocks, sandstones and tuffaceous rocks are widely distributed with electrical resistivity values of 6-77 Ohm-m. Especially, tuffaceous rocks with relatively high electrical resistivity value are predominant at eastern side of fault zone. Consequently, it is known that Pohang and Janggi basins are in fault contact.

      • KCI등재

        제천(提川) 서남부(西南部) 옥천대(沃川帶) 지역(地域)에 대(對)한 중력탐사연구(重力探査硏究)

        민경덕,박혜심,Min, Kyung Duck,Park, Hye Sim 대한자원환경지질학회 1989 자원환경지질 Vol.22 No.2

        The gravity measurement has been conducted at 61 stations with an interval of about 500 to 1,000 m along two survey lines of about 47 Km between $Chungju-Jech{\check{o}}n$ and $Salmi-D{\check{o}}cksanmy{\check{o}}n$ in order to study on the subsurface geologic structure and structural relation between $Okch{\check{o}}n$ Group and Great Limestone Group of $Chos{\check{o}}n$ Supergroup. The Bouger gravity anomalies were obtained from the reduction of the field observations, and the distribution patterns of the basement and subsurface geologic structure were interpreted by means of the Fourier-Series and Talwani method for two-dimensional body. The depth of Conrad discontinuity varies from 12.7 Km to 15.7 Km, and vertical displacements along the Osanri and Bonghwajae faults are 1.0 Km and 1.5 Km, respectively between Chungju and $Jech{\check{o}}n$. The depth of Conrad discontinuity varies from 13.8 Km to 15.4 Km, and vertical displacement along the Bonghwajae fault is 0.5 Km between Salmi and $D{\check{o}}cksanmyon$. The basement is widely exposed at several places between Chungju and $Jech{\check{o}}n$. In the unexposed area between Osanri and $W{\check{o}}lgulri$, its depth is from 1.5 Km to 2.1 Km. It is displaced downward along the Osanri and Bonghwajae faults by 0.8 Km and 0.6 Km, respectively, and is displaced upward along the Dangdusan fault by 1.6 Km. On the other hand, the depth of the basement varies abruptly by the Sindangri, Jungwon, Kounri, and Bonghwajae faults between Salmi and $D{\check{o}}cksanmy{\check{o}}n$, and it is from 2.8 Km to 3.2 Km around $Salmimy{\check{o}}n$, from 1.6 Km to 2.5 Km between the Sindangri and Bonghwajae faults, 3.0 Km near Koburangjae, and 2.5 Km at $Doj{\check{o}}nri$. The high Bouguer gravity anomalies are due to the accumulation of $Okch{\check{o}}n$ Group and $Jangs{\check{o}}nri$ Metamorphic Complex whose density is higher than the basement exposed between Sondong and Osanri, and imply the existance of Bonghwajae Metabasite or hornblende gabbro of high density distributed along the Bonghwajae fault in the vicinity of Koburangjae. The low Bouguer gravity anomalies resulted form the fracture zone associated with fault or rock of low density imply the existance of the Osanri, Bonghwajae, Dangdusan faults and $Daed{\check{o}}cksan$ thrust between Chungju and $Jech{\check{o}}n$, the uplift of the basement by the Sindangri, Jungwon, Kounri, and Bonghwajae faults, and extensive distribution of Cretaceous biotite granites between Salmi and $Docksanmy{\check{o}}n$. The thickness of $Okch{\check{o}}n$ metasediments varies from 1.5 Km to 3.2 Km, and that of Great Limestone Group of $Chos{\check{o}}n$ Supergroup from 200 m to 700 m. It is interpreted that $Okch{\check{o}}n$ Group is in contact with Great Limestone Group of $Chos{\check{o}}n$ Supergroup by the fault zones of the Bonghwajae and $Daed{\check{o}}cksan$ faults, and the Bongwhajae fault is a thrust of high angle, by which the east of the basement is displaced downward 0.5 Km between Chungju and lechon, and 1.0 Km between Salmi and $D{\check{o}}cksanmy{\check{o}}n$.

      • KCI등재

        포항 및 장기분지에 대한 고지자기, 층서 및 구조 연구; 중력탐사에 의한 홍해 및 형산강지역의 지질구조

        민경덕,윤혜수,문희수,이현구,김인수,Min, Kyung Duck,Yun, Hyesu,Moon, Hi-Soo,Lee, Hyun Koo,Kim, In-Soo 대한자원환경지질학회 1992 자원환경지질 Vol.25 No.3

        The gravity measurement has been conducted at 327 station with an interval of 25 m along the survey lines of 1.6 km and 1.7 km traversing Hyungsan river and of 2.35 km and 2.42 km running N-S direction near Heunghae-eup in Pohang basin. Bouguer gravity anomalies were obtained, and geologic structure along four survey lines were interpreted by applying Fourier series and Talwani methods for two demensional body. A fault is in existence along the Hyungsan river, and northern block of it is displaced down by 150 m to 200 m relative to southern one. The thicknesses of Yeonil Group vary from 250 m to 550 m and from 150 m to 300 m in the northern and southern blocks of the fault, respectively. Another fault is in existence running E-W direction near Heunghae-eup, and its southern block is displaced down by about 250 m relative to its northern block. The thicknesses of Yeonil Group vary from 200 m to 400 m and from 500 m to 700 m in the southern and northern blocks of the fault, respectively. Above two faults are normal faults and make a graben structure, which results the age of rocks in the central region between the faults is younger than those of outside regions. This result coincides with that of paleontological study.

      • KCI등재

        옥천대내(沃川帶內) 신당(新堂)-도전리(道田里) 지역(地域)에 대한 ELF-MT 탐사(探査) 연구(硏究)

        민경덕,전정수,정승환,Min, Kyung Duck,Jeon, Jeong Soo,Chung, Seung Hwan 대한자원환경지질학회 1988 자원환경지질 Vol.21 No.3

        The ELF-MT survey has been conducted at 9 points along the national road between the Sindangri and Dojonri area to study on the boundary between the Okchon and Choson systems, and subsurface geological structure of these two systems. Natural electromagnetic fields of 7.8, 14, and 20 Hz in the Schumann resonant frequency band were used for ELF-MT measurement. Apparent resistivity values were calculated from the measured magnetic and electric fields at each frequency, and resistivity sections were obtained by means of a trial and error method for one-dimensional analysis and finite element method for two-dimensioal analysis. The results of this study show that the resistivities of the Okchon and Choson systems are 700-3500 ohm-m and 40-5000 ohm-m, respectively. The boundary between these two systems is a fault with the width of 1 km fault zone and resistivity value of 200 ohm-m, and is located around Koburangjae. Another fault is appeared in Sindangri, and its resistivity value is 130 ohm-m. Intrusion of biotite granite is distributed in Jungchijae, and its resistivity value is 750 ohm-m. The area between Susanri and Koburangjae shows the highest resistivity value of 3500 ohm-m because metabasite and amphibolite are distributed in that area. Extremely low resistivity value of 40 ohm-m around Yongamsan is due to the Yongam formation, which is composed of graphitic black slate and overlying Choson Great Limestone group.

      • KCI등재
      • KCI등재

        충남탄전에 분포하는 대동층군에 대한 고지자기학적 연구

        민경덕,엄정기,김동욱,최용훈,이윤수,니시무라 스스무,Min, Kyung Duck,Um, Jeong-Gi,Kim, Dong Wook,Choi, Yong Hoon,Lee, Youn Soo,Nishimura, Susumu 대한자원환경지질학회 1992 자원환경지질 Vol.25 No.1

        Paleomagnetic study on the sedimentary rocks in the Choongnam Coal Field has been carried out to determine the direction of declination and inclination of NRM and position of paleomagnetic pole, and to investigate the geotectonism and geomagnetic stratigraphy of the sedimentary rocks in the Daedong Group. As a result of paleomagnetic study, the study area can be divided tectonically into two blocks by Baegunsa fault, namely northwestern and southeastern blocks. Site mean declination and inclination of Baegunsa and Seoungjuri Formations in the northwestern block are $23.2^{\circ}$ and $54.9^{\circ}$, respectively. Those of Amisan, Jogyeri, Baegunsa and Seoungjuri Formations in the southeastern block show normal direction with declination and inclination of $-22.1^{\circ}$ and $11.2^{\circ}$, and reversed direction with those of $158.5^{\circ}$ and $-12.6^{\circ}$, respectively. Average paleomagnetic pole position in the northwestern block is located at $212.9^{\circ}E$ and $71.1^{\circ}N$, and that in the southeastern block at $345.7^{\circ}E$ and $53.3^{\circ}N$. This difference suggests relative rotation of about $45^{\circ}$ between two blocks. The paleolatitude of Daedong Group at the time of sedimentation is $5.6^{\circ}N$ much lower than present latitude of $37.7^{\circ}N$. Compared with worldwide Mesozoic paleomagnetic polarity stratigraphy, Amisan Formation is correlated with the lower boundary of Nuanetsi reversal zone in Graham interval, and Baegunsa and Seoungjuri Formations are correlated with just upper part of the upper boundary of Nuanetsi reversal zone, and their geologic ages are Late Triassic to Early Jurassic. The position of paleomagnetic pole acquired from Daedong Group in the study area is different from those in other places. This may be attributed to the different tectonic movement by Daebo Orogeny occurred after the deposition of Daedong Group.

      • KCI등재

        중력탐사에 의한 삼척-태백간의 지하지질 및 지질구조 연구

        민경덕,조광은,Min, Kyung Duck,Cho, Kwang Eun 대한자원환경지질학회 1995 자원환경지질 Vol.28 No.1

        The gravity measurment has been carried out at 48 gravity stations with intervals of 1.0~1.5 km along the survey line between Samcheog, Gosari and Taebaek to study subsurface geology and geologic structure in the northeastern part of the Ockchon zone. The Bouguer gravity anomaly values were obtained from the measured gravity values through the gravity corrections. The subsurface geology and geologic structure were interpreted quantitatively by means of the Fourier series method and Talwani method for 2.5 dimensional body. In the study area, the depth of Conrad discontinuity is about 10 km at Samcheog, northeastern end of the survey line, and it is increased rapidly to about 12.5 km at Miro, 15 km at Gosari and 15.5 km at Dongjeom, southwestern end of the survey line, respectively. The depth of the basement of the Ockchon zone exposed at Samcheog is increased smoothly to about 2 km at 5 km from Samcheog along the survey line, and is exposed again in the area between Singiry and Gosari. Beyond Gosari its depth is increased to about 1.7 km, and displaced 2.3 km downward by Osipcheon fault near Dogyeri and 0.5 km by Baeksan thrust near Cheolam, respectively. Many V-shaped low Bouguer gravity anomalies resulted from the fracture zone associated with faults imply the existence of Osipcheon fault and several inferred faults. The low Bouguer gravity anomaly zone between Tongdong and Dongjeom is caused by Jurassic gneissose granite. A local high Bouguer gravity anomaly at 35 km along the survey line from Samcheog is interpreted by the effect of iron deposit of high density existed at subsurface. The thickness of Great Limestone Group varies from 0.5 km to 1.4 km, that of Pyeongan Supergroup from 0.4 km to 0.9 km, and that of Yangdeog Group is about 0.3 km. The thickness of Jurassic gneissose granite varies from 1.5 to 3.0 km.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼