RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성

        이혜리 ( Hye-ri Lee ),나일채 ( Il-chai Na ),오성준 ( Sung-jun Oh ),박권필 ( Kwon-pil Park ) 한국화학공학회 2017 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.55 No.3

        최근에 저가의 고분자 전해질 연료전지(Proton Exchange Membrane Fuel Cells, PEMFC)용 비불소계 전해질 막 연구 개발이 활발히 진행되고 있다. 본 연구에서는 sulfonated poly (ether ether ketone) (sPEEK) 막의 내구성을 증가시키기 위해 PI 지지체를 이용한 강화 막을 제조하였다. 단일(비강화) 막전극합체(MEA)와 강화막 MEA의 내구성을 시험하기 위해 열화 가속화 기법을 이용하여 MEA 열화 실험을 진행하였다. 열화 전과 후에 I-V 분극곡선, 수소투과도, 전극 활성 면적, 막 저항과 부하 전달 저항을 측정하여 열화 전과 후를 비교하였다. 그 결과, 강화 MEA가 단일 MEA에 비해 수소투과전류밀도가 낮으며, 내구성이 높음을 확인하였다. 특히 열화 후 강화 MEA에서는 단일 MEA에서 나타난 쇼트 현상이 나타나지 않았다. Recently, there are many efforts focused on development of more economical non-fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, sulfonated poly (ether ether ketone) (sPEEK) membrane reinforced with poly imide was made to enhance of membrane durability. In order to test durability of single (un-reinforced) membrane and reinforced membrane MEA (Membrane and Electrode Assembly), degradation accelerated stress test was used. Before and after degradation, I-V polarization curve, hydrogen crossover current, electrochemical surface area, membrane resistance and charge transfer resistance were measured. As a result of experiments, hydrogen crossover current of reinforced MEA was lower than that of single MEA, therefor durability of reinforced MEA was higher than that of single MEA. There was not especially short phenomena in reinforced MEA after degradation accelerated stress test.

      • KCI등재

        고농도 NaBH4 수용액에서 비담지 촉매의 가수분해 반응 특성

        이혜리 ( Hye Ri Lee ),나일채 ( Il Chai Na ),박권필 ( Kwon Pil Park ) 한국화학공학회 2016 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.54 No.5

        휴대용 고분자전해질 연료전지의 수소발생용으로써 NaBH4는 많은 장점을 갖고 있다. 본 연구에서는 고농도 NaBH4용액에서 비담지 Co-P-B, Co-B 촉매의 NaBH4 가수분해 특성에 대해 연구하였다. 고농도에서 수소 발생 수율을 높이기 위해 NaBH4 가수분해 반응의 수소 발생 수율에 미치는 촉매 형태, NaBH4 농도, 응축수 회수 등의 영향에 대해 실험하였다. Co-P-B 제조과정에서 붕소의 비가 높아질수록 수소 발생 수율이 증가하였다. Co-P:B = 1:5 촉매를 사용해 NaBH4 수용액 농도를 20 wt%에서 25 wt%로 증가시켰을 때 수소 발생 수율이 감소하였다. Co-P-B와 Co-B 촉매를 같이 사용한 반응기에서 촉매 팩의 두께를 감소시키고 응축수를 회수하여, NaBH4 25 wt% 수용액으로 최고 수소 발생수율 96.4%를 얻었다. Sodium borohydride, NaBH4, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of NaBH4 hydrolysis reaction using unsupported Co-P-B Co-B, catalyst at high concentration NaBH4 solution were studied. In order to enhance the hydrogen generation yield at high concentration of NaBH4, the effect of catalyst type, NaBH4 concentration and recovery of condensing water on the hydrogen yield were measured. The yield of hydrogen evolution increased as the boron ratio increased in preparation process of Co-P-B catalyst. The hydrogen yield decreased as the concentration increased from 20 wt% to 25 wt% in NaBH4 solution during hydrolysis reaction using 1:5 Co-P-B catalyst. Maximum hydrogen yield of 96.4% obtained by recovery of condensing water and thinning of catalyst pack thickness in reactor using Co-P-B with Co-B catalyst and 25 wt% NaBH4solution.

      • KCI등재

        고분자 전해질 연료전지 구동 조건에 따른 MEA 열화 및 배출수 특성

        황병찬 ( Byungchan Hwang ),이세훈 ( Sehoon Lee ),나일채 ( Il-chai Na ),박권필 ( Kwonpil Park ) 한국화학공학회 2017 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.55 No.4

        고분자 전해질 연료전지의 구동과정 중 습도제어는 매우 중요한 제어 조건이다. 물 관리 측면에서는 저가습 조건이 유리하고, 배출수 활용 및 에너지 효율면에서는 고가습이 유리하다. 본 연구에서는 배출수 활용면에서 저가습과 고가습 구동 과정에서 배출수의 특성에 대해서 연구하였다. 배출수의 불순물은 막과 전극의 열화 과정에서 발생하는 것이므로 저가습과 고가습 조건에서 막전극합체(MEA)열화에 대해서도 연구하였다. 연료극 0% RH의 저가습 조건에서 라디칼 발생속도가 커 고분자 막 열화의 주요 원인임을 보였다. 양쪽 극 모두 고가습(RH 100%) 0.6 V에서 불소 이온 농도 약20 ppb로 낮은 농도를 나타내서, 수전해 원료수로 사용하기에 충분하였다. 고가습 조건에서 배출한 응축수에서 0.2 ppb이하의 매우 낮은 농도의 백금이 검출되었다. Humidity control of proton exchange membrane fuel cell(PEMFC) is very important control condition during driving. In terms of water management, low humidification conditions are advantageous, and high humidification is advantageous in terms of drainage utilization and energy efficiency. In this study, the characteristics of outlet water in low humidification and high humidification process were studied in terms of utilization of discharged water. Since the impurities in the effluent are generated during the degradation of the membrane and the electrode assembly( MEA), degradation of the MEA under low humidification and high humidification conditions was also studied. The rate of radical generation was high at low humidification condition of the anode RH 0%, which showed that it was the main cause of the degradation of the polymer membrane. Analysis of effluent showed low concentration of fluoride ion concentration of about 20 ppb at high humidification (both electrodes RH 100%) and 0.6 V, which was enough to be used as the feed water for electrolysis. Very low concentration of platinum below 0.2 ppb was detected in the condensate discharged from the high humidification condition.

      • KCI등재

        황산/글루코스 용액으로부터 전기투석에 의한 황산 분리

        이세훈 ( Se-hoon Lee ),김영숙 ( Young-sook Kim ),추천호 ( Cheun-ho Chu ),나일채 ( Il-chai Na ),오용환 ( Yong-hwan Oh ),박권필 ( Kwon-pil Park ) 한국화학공학회 2017 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.55 No.1

        황산에 의한 바이오매스의 당화 후 황산의 회수는 매우 중요하다. 본 연구에서는 전기투석 방법에 의해 황산과 글루코스 혼합용액으로부터 황산을 분리하는 연구를 하였다. 전기투석은 음이온막과 양이온막을 사용한 3실 방식이 일반적인데 본 연구에서는 음이온막 만을 사용한 2실 방식을 실험했다. 글루코스 10~30% 황산농도 1~3M 농도 범위의 용액에서 2실 방식의 전기투석으로 황산을 완전 분리할 수 있었다. 실험한 3종류의 음이온 막 중에서 확산과 대류의 영향이 작은 음이온 막에서는 전류밀도에 비례해 황산분리 속도가 증가하였다. 전기를 가하지 않고 확산과 대류에 의해 황산분리 45%를 달성할 수 있었다. Recovery of sulfuric acid is very important after biomass converted to sugar by acid hydrolysis. In this work, the separation of sulfuric acid from sulfuric acid/glucose solution was studied by electrodiaysis. Three chamber method, which requires both anion membrane and cation membrane, is the most commonly used in the electrodialysis process, but two chamber method using only an anion membrane was the focus of this study. Sulfuric acid was perfectly separated from a mixture of 10~30 wt% glucose and 1~3 M sulfuric acid by electrodialysis using two chamber method. The separation rate of sulfuric acid lineary increased with higher current density when the affect of diffusion and convection of the membrane was small. Without electric energy, 45% of sulfuric acid was separated by diffusion and convection only.

      • KCI등재

        NaBH4 가수분해 반응기 소재로서 알루미늄 합금의 특성 연구

        정현승 ( Hyeon Seong Jung ),오성준 ( Sung June Oh ),정재진 ( Jae Jin Jeong ),나일채 ( Il Chai Na ),추천호 ( Cheun Ho Chu ),박권필 ( Kwon Pil Park ) 한국화학공학회 2015 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.53 No.6

        NaBH4 가수 분해용 경량반응기의 재질로서 알루미늄 합금을 검토하였다. 알루미늄은 알칼리에 용해되는데, NaBH4반응 용액중에 안정화제로 NaOH가 포함되어 있다. 알루미늄의 부식 속도를 낮추기 위해서 NaOH 농도를 낮추면 저장중에 NaBH4가 손실된다. 그래서 최적의 NaOH 농도를 결정할 때 알루미늄 부식과 NaBH4 안정화를 모두 고려해야한다. NaBH4 안정화와 알루미늄 부식속도는 수소발생속도에 의해 측정하였다. NaBH4 안정화는 20~50 oC에서 알루미늄 부식속도는 60~90 oC 온도에서 실험하였다. 알루미늄 부식과 NaBH4 안정화를 모두 고려한 최적의 NaOH농도는 0.30 wt% 였다. 알루미늄 합금 6061를 사용해 반응기 온도 80~90 oC에서 NaOH 0.3 wt%로 200분간 반응을 진행하였다. Aluminum alloy was examined as a material of low weight reactor for hydrolysis of NaBH4. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in NaBH4 solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of NaBH4 during storage of NaBH4 solution. Therefore stability of NaBH4 and corrosion of aluminum should be considered in determining the optimum NaOH concentration. NaBH4 stability and corrosion rate of aluminum were measured by hydrogen evolution rate. NaBH4 stability was tested at 20~50 oC and aluminum corrosion was measured at 60~90 oC. The optimum concentration of NaOH was 0.3 wt%, considering both NaBH4 stability and aluminun corrosion. NaBH4 hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at 80~90 oC.

      • KCI등재

        효소연료전지의 Cathode 제조조건이 OCV에 미치는 영향

        이세훈 ( Se-hoon Lee ),김영숙 ( Young-sook Kim ),추천호 ( Cheun-ho Chu ),나일채 ( Il-chai Na ),이정훈 ( Jung-hoon Lee ),박권필 ( Kwon-pil Park ) 한국화학공학회 2016 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.54 No.2

        효소 전극 cathode와 PEMFC용 전극 anode를 이용하여 효소연료전지를 구동하였다. 효소 cathode는 그래파이트 분말과 효소로서 Laccase, 산화환원 매개체로서 ABTS를 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. cathode 제조조건을 변화시키며 OCV를 측정해 효소 cathode 제조 최적조건을 찾았다. 효소 cathode 압축 시 최적 압력은 4.0 bar 였다. 효소 cathode에서 그래파이트가 95%일 때 최고의 OCV를 나타냈다. cathode기질 용액의 최적 글루코스 농도는 0.4 mol/l이었다. Enzyme fuel cells were composed of enzyme cathode and PEMFC anode. Enzyme cathode was fabricated by compression of a mixture of graphite particle, laccase as a enzyme and ABTS as a redox mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of cathode manufacture factors, to find optimum condition of enzyme cathode. Optimum pressure was 4.0 bar for enzyme cathode pressing process. Highest OCV was obtained at 95% graphite composition in enzyme cathodee. Optimum glucose concentration was 0.4 mol/l in cathode substrate solution.

      • KCI등재

        PEMFC MEA 제조 방법에 따른 성능 및 내구성

        정재현 ( Jaeh Yeun Jeong ),송명현 ( Myung Hyun Song ),정회범 ( Hoi Bum Chung ),나일채 ( Il Chai Na ),이정훈 ( Jung Hoon Lee ),이호 ( Ho Lee ),박권필 ( Kwon Pil Park ) 한국화학공학회 2014 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.52 No.5

        고분자 전해질 연료전지의 성능과 내구성에 미치는 막 전극 접합체(MEA) 제조방법의 영향에 대해 연구하기 위해닥터 블레이드 방법, 스프레이 방법, 스크린 프린트 방법 그리고 스크린 프린트+스프레이 방법에 의해 MEA를 제조하였다. 제조된 MEA를 체결한 단위전지의 성능을 측정해 각 MEA의 초기 성능을 비교하였다. 10초간 0.6V 일정전압유지 후 0.9 V에서 10초간 유지하는 전극 열화 가속 시험(AST)을 각 MEA 적용해 내구성을 시험하였다. 전극 열화 가속 시험 6,000 사이클 전 후 I-V 곡선, 임피던스, 순환 전압측정법(CV), 선형쓸음 전기량측정법(LSV), 투과전자현미경(TEM) 등을 측정하였다. 닥터 블레이드 방법에 의해 제조한 MEA의 초기 성능이 제일 높았고, 스크린 프린트+스프레이 방법에 의해 제조한 MEA가 제일 낮은 열화 속도를 보였다. To study the effects of fabrication methods on the performance and durability of polymer electrolyte membranefuel cells (PEMFCs), membrane-electrode assemblies (MEAs) were fabricated using a Dr blade method, a spraymethod, screen print method and screen print + spray method. The performance of single cells assembled with the preparedMEAs were initially measured and compared. Electrode accelerated stress testing (AST) involving a potentiostatic stepwavewith 10 s at 0.6 V followed by 30 s at 0.9 V was applied to test durability of MEAs. Before and after 6,000cyclesof the AST, I-V curves, impedance spectra, cyclic voltammograms, linear sweep voltammetry (LSV) and transmissionelectron microscope (TEM) were measured. Under the operating conditions, the Dr Blde MEA exhibited the highest initialperformance. After electrode accelerated stress testing, screen print + spray MEA showed lowest degradation rate.

      • KCI등재

        고분자전해질 연료전지 열화 분석방법에 의한 PEM 수전해 열화 평가

        오소형 ( Sohyeong Oh ),양진원 ( Jinwon Yang ),추천호 ( Cheun-ho Chu ),나일채 ( Il-chai Na ),박권필 ( Kwonpil Park ) 한국화학공학회 2021 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.59 No.1

        PEM(Proton Exchange Membrane) 수전해는 PEM 연료전지와 동일한 PEM 전해질 막을 사용하며, 동일한 반응이지만 방향이 반대인 반응에 의해 진행된다. PEM 연료전지는 전해질 막과 촉매의 열화와 내구성에 대해 많은 연구가 진행되어 개발된 열화분석 방법이 많다. 본 연구에서 PEM 수전해 내구성 평가에 PEM 연료전지 내구성 평가 방법 적용이 가능한지 검토하였다. PEM 수전해 열화과정에서 PEM 연료전지와 동일한 조건으로 LSV(Linear sweep voltammetry), CV(Cyclic voltammetry), Impedance, SEM(Scanning Electron Microscope), FT-IR(Fourier Transform Infrared spectroscopy) 등을 분석해 비교하였다. PEM 연료전지처럼 막을 통과한 수소가 Pt/C 전극에서 산화되어 수소투과전류밀도를 측정함으로써 PEM 수전해 고분자 막의 열화정도를 분석할 수 있었다. 수소/질소 유입 조건에서 CV에 의한 전극활성면적(ECSA)을 측정해 전극열화를 분석할 수 있었다. 수소와 공기를 Pt/C 전극과 IrO<sub>2</sub> 전극에 공급하면서 각 전극의 임피던스를 측정해 전극과 고분자 막의 내구성을 평가할 수 있었다. The PEM(Proton Exchange Membrane)water electrolysis uses the same PEM electrolyte membrane as the PEM fuel cell and proceeds by the same reaction but the opposite direction. The PEM fuel cell has many methods of degradation analysis since many studies have been conducted on the degradation and durability of the membrane and catalyst. We examined whether PEM fuel cell durability evaluation method can be applied to PEM electrolytic durability evaluation. During the PEM electrolytic degradation process, LSV(Linear sweep voltammetry), CV(Cyclic voltammetry), Impedance, SEM(Scanning Electron Microscope) and FT-IR(Fourier Transform Infrared spectroscopy) were analyzed and compared under the same conditions as the PEM fuel cell. As the PEM fuel cell, hydrogen passing through the membrane was oxidized at the Pt/C electrode, and the hydrogen permeation current density was measured to analyze the degree of degradation of the PEM membrane. Electrode degradation could be analyzed by measuring the electrode active area (ECSA) by CV under hydrogen/nitrogen flowing conditions. While supplying hydrogen and air to the Pt/C electrode and the IrO<sub>2</sub> electrode, the impedance of each electrode was measured to evaluate the durability of the electrode and membrane.

      • KCI등재

        효소연료전지의 Anode 제조조건이 OCV에 미치는 영향

        김영숙 ( Young Sook Kim ),이세훈 ( Se Hoon Lee ),추천호 ( Cheun Ho Chu ),나일채 ( Il Chai Na ),이호 ( Ho Lee ),박권필 ( Kwon Pil Park ) 한국화학공학회 2015 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.53 No.1

        효소 전극 anode와 PEMFC용 전극 cathode를 이용하여 효소연료전지를 구동하였다. 효소 anode는 그래파이트 분말과 효소로서 글루코스 산화제, 전자매개체로서 페로센을 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. Anode제조조건을 변화시키며 OCV를 측정해 효소 anode 제조 최적조건을 찾았다. 효소 anode 압축 시 최적 압력은 9.0MPa였다. 효소 anode에서 그래파이트가 60%일 때 최고의 OCV를 나타냈다. anode 기질 용액의 최적 글루코스 농도는 1.7 mol/l이었으며, anode의 효소 활성은 7일 동안 안정적으로 유지되었다. Enzyme fuel cells were composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase as a enzyme and ferrocene as a mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 9.0 MPar for enzyme anode pressing process. Highest OCV was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7mol/l in anode substrate solution and enzyme activity of anode was stable for 7 days.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼