RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Biogenic TiO2 나노입자 전처리가 클로로포름 광분해에 미치는 영향

        권수열 ( Soo Youl Kwon ),김영 ( Young Kim ),( Greg Roorrer ),( Lewis Semprini ) 한국물환경학회 2011 한국물환경학회지 Vol.27 No.1

        Photocatalysis using UV light and catalysts is an attractive low temperature and non-energy-intensive method for remediation of a wide range of chemical contaminants like chloroform (CF). Recently development of environmental friendly and sustainable catalytic systems is needed before such catalysts can be routinely applied to large-scale remediation or drinking water treatment. Titanium dioxide is a candidate material, since it is stable, highly reactive, and inexpensive. Diatoms are photosynthetic, single-celled algae that make a microscale silica shell with nano scale features. These diatoms have an ability to biologically fabricate TiO2 nanoparticles into this shell in a process that parallels nanoscale silica mineralization. We cultivated diatoms, metabolically deposited titanium into the shell by using a two-stage photobioreactor and used this biogenic TiO2 to this study. In this study we evaluated how effectively biogenic TiO2 nanoparticles transform CF compared with chemically-synthesized TiO2 nanoparticlesthe and effect of pretreatment of diatom-produced TiO2 nanoparticles on photocatalytic transformation of CF. The rate of CF transformation by diatom-TiO2 particles is a factor of 3 slower than chemically-synthesized one and chloride ion production was also co-related with CF transformation, and 79~91% of CF mineralization was observed in two TiO2 particles. And the period of sonication and mass transfer due to particle size, evaluated by difference of oxygen tention does not affect on the CF transformation. Based on the XRD analysis we conclude that slower CF transformation by diatom-TiO2 might be due to incomplete annealing to the anatase form.

      • KCI등재

        하수관거 및 토구에서 발생하는 유황계 화합물 악취특성

        박상진,권수열,Park, Sang Jin,Kwon, Soo Youl 한국환경보건학회 2014 한국환경보건학회지 Vol.40 No.6

        Objectives: This study was carried out to investigate the characteristics of odors emitted from sewage in a sanitary sewer and its outlets. Methods: The concentration of mal-odorous sulfur was analyzed by gas chromatograph, and odor intensity was estimated by an on-site sensory test. Odor intensity calculated from instrumental analysis results was compared with odor intensity observed at field. Results: As a results, the concentration of $H_2S$ ranged from 2.4 ppb to 5,889 ppb (average 703 ppb), while $CH_3SH$, $(CH_3)_2S$, and $(CH_3)_2S_2$ showed from 10 ppb to 554 ppb (average 119 ppb) and from 20 ppb to 332 ppb (average 70 ppb) and from 2.7 ppb to 8.1 ppb (average 5 ppb) individually. Average odor intensity observed in the field was degree three. Odor intensity calculated from sulfur compound concentration was confirmed as similar to the observed odor intensity because the coefficient of variance between the observed and the calculated intensities was less than one. Conclusion: It was expected that the results of this study will be helpful to design a deodorizing device to reduce odor emissions from sewerage facilities in the future.

      • KCI등재

        유류로 오염된 토양 복원을 위한 토양가스추출 및 세척공정의 현장적용 연구

        고석오,권수열,유희찬,강희만,이주광,Ko. Seok-Oh,Kwon. Soo-Youl,Yoo. Hee-Chan,Kang. Hee-Man,Lee. Ju-Goang 한국방재학회 2001 한국방재학회논문집 Vol.1 No.3

        현재 운영중인 주유소를 대상으로 토양 및 지하수 오염 정도를 조사하였고 오염물 제거를 위한 물리 화학적 복원기술 적용성에 대한 연구를 실시하였다. 현장의 토양이나 지하수는 국지적으로 차이가 있었으나 토양오염 대책기준을 초과하여 토양층에 유동성 (Free Liquid) 상태의 유류가 존재할 정도로 상당히 오염되어 있다는 것을 확인하였다. 유류 오염 토양에 pilot scale 규모의 토양세척법과 토양가스추출법 (SVE)을 설치하여 운전하였다. 토양세척법의 경우 계면활성제인 Tween80 용액을 주입 한 후 하부에서 추출된 유출수내의 오염물질의 농도를 측정한 결과 용해도 증가에 의하여 TPH 농도의 증가는 약 10배에 이르는 것으로 조사되었으나 유류 유동성의 증가는 관측되지 않았다. SVE법의 경우 추출 1일 경과 후 BTEX와 TPH에 대하여 각각 4kg/day 및 90 kg/day의 최대 제거효율을 보였으며 추출이 지속됨에 따라 제거율이 감소하였다. SVE공정의 효과적 운영을 위하여는 지하수위의 높이에 대한 고려와 오염물의 휘발화 (volatilization)와 추출속도의 평형화를 위한 조절이 필요할 것으로 판단된다. Field investigations for subsurface soil and groundwater at a gas station showed that the site was severely contaminated and even petroleum compounds as free liquid state were observed. Pilot-scale soil flushing and soil vapor extraction process(SVE) were applied to evaluate the effectiveness of pollutants removal. Surfactant solution, Tween 80, was used to enhance the solubility of petroleum compounds and resulted in about 10 times increase on TPH(Total Petroleum Hydrocarbon) concentration. As for SVE method, maximum concentration of TPH and BTEX reached within 24 hours of extraction and then continuously decreased. Considerations on the groundwater level and the kinetic limitation for volatilization of contaminants have to be taken into account for the effective application of SVE process.

      • KCI우수등재

        하수관거 및 토구에서 발생하는 휘발성 유기화합물 악취 특성

        박상진(Sang Jin Park),권수열(Soo Youl Kwon) 한국환경보건학회 2017 한국환경보건학회지 Vol.43 No.6

        Objectives: This study was carried out to investigate the characteristics of volatile organic compounds (VOCs) emitted from sewerage facilities such as a sanitary sewers, outlets, and catch basins. In addition, the dominant malodorous VOCs among the compounds in this study were studied. Methods: Waste gas samples were collected at 27 points in a sanitary sewer in commercial and residental areas. The concentrations of seven volatile organic compounds, including benzene and toluene, in the samples were analyzed by gas chromatograph mass spectrophotometer (GC/MS). Odor concentrations were estimated using the concentration data of the VOCs and each compound’s threshold limit value. Results: As a result, it appeared that the average concentration of total observed data for acetaldehyde was 15.98 ppb and benzene 1.87 ppb, toluene 82.31 ppb, ethyl benzene 63.12 ppb, m+p-xylene 15.66 ppb, oxylene 18.73 ppb, and styrene 4.39 ppb. VOC concentrations in the commercial area were higher than those in the residential area. VOC concentrations of waste gas emitted from sewer lines was also higher than those at the outlet and in the catch basins. It was estimated that the main malodorous VOC among the seven VOCs was acetaldehyde. Conclusions: As there is little data on VOC concentrations inside sewer facilities in Korea, these data will be helpful for estimating impact assessment of VOCs and establishing a counter-plan for the abatement of VOCs from sewer facilities in the future.

      • KCI등재후보
      • KCI우수등재

        시판용 미생물탈취제를 이용한 하수 악취 내 황화수소 저감에 관한 실험적 연구

        박상진(Sang Jin Park),권수열(Soo Youl Kwon) 한국환경보건학회 2020 한국환경보건학회지 Vol.46 No.2

        Objectives: This study was conducted to estimate a technology to reduce hydrogen sulfide (H₂S) in sewage odor using microbial deodorant. Methods: After injecting five commercially available microbial deodorants into fresh sewage, the concentration of hydrogen sulfide over time was measured using the headspace method. H₂S concentration in odor samples was measured using gas chromatograph/FPD. Calculated odor concentration and calculated odor intensity by H₂S concentration remaining after treatment with microbial deodorant were evaluated theoretically. Results: The rate of H₂S abatement by microbial deodorant differed depending on the experimental conditions and the type of deodorant, but it was found to range from 63 to 82%. Especially, two deodorants showed high H₂S reduction rates of over 80% on average. However, based on the best deodorant, the theoretically calculated odor concentration by H₂S after microbial deodorant treatment was 4,400 OUk, and the theoretical odor intensity was also rated at 4 degrees or higher. Conclusions: In conclusion, microbial deodorant is considered to have a relatively high effect on reducing H₂S in sewage odor. However, even after treatment with microbial deodorant, calculated odor concentration and calculated odor intensity were relatively high. This is thought to be caused by other odorous substances besides H₂S.

      • KCI등재

        반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 환원탈염소화

        안영호,최정동,김영,권수열,박후원,Ahn, Young-Ho,Choi, Jeong-Dong,Kim, Young,Kwon, Soo-Youl,Park, Hoo-Won 한국지하수토양환경학회 2006 지하수토양환경 Vol.11 No.2

        실험실 규모의 반연속 흐름 2단 토양컬럼을 이용하여 사염화에틸렌(PCE)에서 에틸렌으로의 혐기성 환원 탈염소화 반응특성을 조사하였다. 국내의 TCE로 오염된 현장에서 토양을 채취하여 컬럼 반응조에 충진하고, lactate(전자공여체 그리고/혹은 탄소원으로서)와 PCE를 함유한 현장 지하수를 컬럼 반응조로 주입하였다. 운전초기 약 50일 경과기간 동안 유입 lactate와 PCE의 질량비는 620:1이었는데, 이때 PCE에서 cis-DCE로의 불완전한 환원성 탈염소화가 관찰되었다. 그러나 유입 lactate와 PCE의 질량비를 5,050:1로 증가시킨 두번째 운전기간동안 PCE에서 ethylene로의 완벽한 탈염소화를 관찰할 수 있었는데, 이는 초기 운전기간 동안의 적절한 전자공여체의 공급의 중요성을 보여 주었다. PCE에서 cis-DCE로의 탈염소화율은 $0.62{\sim}1.94\;{\mu}mol$ PCE/L pore volume/d이었고, cis-DCE에서 ethylene으로의 탈염소화율은 $2.76\;{\mu}mol$ cis-DCE/L pore volume/d으로 나타났다. 전체 시스템에서의 PCE에서 ethylene으로의 전환율은 $1.43\;{\mu}mol$ PCE/L pore volume/d이었다. 본 실험에서 PCE에서 cis-DCE로의 분해단계에서 수소의 농도는 $10{\sim}64\;mM$, 그리고 cis-DCE에서 에틸렌으로의 분해단계에서 수소의 농도는 $22{\sim}29\;mM$이었다. 본 연구에서의 이러한 긍정적인 실험 결과는 본 연구에서 조사된 TCE로 오염된 지하수의 현장 생물학적 복원을 위해 혐기성 환원 탈염소화 공정의 적용 가능성을 보여준다. Anaerobic reductive dechlorination of tetrachloroethylene (PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate (as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. Dechlorination rate of PCE to cis-DCE was $0.62{\sim}1.94\;{\mu}mol$ PCE/L pore volume/d and $2.76\;{\mu}mol$ cis-DCE/ L pore volume/d for that for cis-DCE to ethylene, resulting that net dechlorination rate in the system was 1.43 umol PCE/L pore volume/d. During the degradation of cis-DCE to ethylene, the concentration of hydrogen in column groundwater was $22{\sim}29\;mM$ and $10{\sim}64\;mM$ for the degradation of PCE to cis-DCE. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through in-situ biological anaerobic reductive dechlorination processes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼