RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh

        Kim, Min Sung,Lee, Byungjun,Kim, Hong Nam,Bang, Seokyoung,Yang, Hee Seok,Kang, Seong Min,Suh, Kahp-Yang,Park, Suk-Hee,Jeon, Noo Li IOP Publishing 2017 Biofabrication Vol.9 No.1

        <P>We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 mm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3. x. 3 cm(2) or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with similar to 50 mu m thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.</P>

      • Homogeneity Evaluation of Geopolymer Waste Form Containing Radioactive Spent Ion Resins Using LIBS and Statistical Approach

        Seokyoung Oh,Byoungkwan Kim,Jaehyuk Kang,Hyun-min Ma,Younglim Shin,Wooyong Um 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        The homogeneity of radioactive spent ion exchange resins (IERs) distribution inside waste form is one of the important characteristics for acceptance of waste forms in long-term storage because heterogenous immobilization can lead to the poor structural stability of waste form. In this study, the homogeneity of metakaolin-based geopolymer waste form containing simulant IERs was evaluated using a laser-induced breakdown spectroscopy (LIBS) and statistical approach. The cation-anion mixed IERs (IRN150) were used to prepare the simulant spent IERs contaminated by non-radioactive Cs, Fe, Cr, Mn, Ni, Co, and Sr (0.44, 8.03, 6.22, 4.21, 4.66, 0.48, and 0.90 mg/g-dried IER, respectively). The K2SiO3 solution to metakaolin ratio was kept constant at 1.2 and spent IERs loading was 5wt%. For the synthesis of homogeneous geopolymer waste form, spent IERs were mixed with K2SiO3 solution and metakaolin first, and then the fresh mixture slurry was poured into plastic molds (diameter: 2.9 cm and height: 6.0 cm). The heterogeneous geopolymer waste form was also fabricated by stacking two kinds of mixtures (8wt% IERs loading in bottom and 2wt% in top) in one mold. Geopolymers were cured for 7d (1d at room temperature and 6d at 60°C). The hardened geopolymers were cut into top, middle, and bottom parts. The LIBS spectra and intensities for Cs were obtained from the top and bottom of each part. Cs was selected for target nuclide because of its good sensitivity for measurement. Shapiro-Wilk test was performed to determine the normality of LIBS data, and it revealed that data from the homogeneous sample is normal distribution (p-value = 0.9246, if p-value is higher than 0.05, it is considered as normal distribution). However, data from the heterogeneous sample showed abnormal distribution (p-value = 7.765×10-8). The coefficient of variation (CoV) was also calculated to examine the dispersion of data. It was 31.3% and 51.8% from homogeneous and heterogeneous samples, respectively. These results suggest that LIBS analysis and statistical approaches can be used to evaluate the homogeneity of waste forms for the acceptance criterion in repositories.

      • Solidification of Radioactively Contaminated Soils Using Cement Waste Forms

        Hyun-min Ma,Byoungkwan Kim,Jaehyuk Kang,Seokyoung Oh,Younglim Shin,Wooyong Um 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        The soils contaminated with radionuclides such as Cs-137 and Sr-90 should be solidified using a binder matrix, because radioactively contaminated soils pose environmental concerns and human health problems. Ordinary Portland cement has been widely used to solidify various radioactive wastes due to its low cost and simple process. In this study, simulant soil waste was solidified using cement waste form. The soils were collected around ‘Kori Nuclear Power Plant Unit 1’ and they were contaminated with the prepared simulant liquid waste containing Fe, Cr, Cs, Ni, Co, and Mn. The water-to-dry ingredients (W/D) ratio of cement waste form was 0.40. The cement paste was poured into a cubic mold (5×5×5 cm) and then cured for 28 days at room temperature. The 28-day compressive strength, water immersion, and EPA1311-toxicity characteristic leaching procedure (TCLP) tests were performed to evaluate the structural stability of cement waste form. The compressive strength was not proportional to soil waste loading, and the lowest compressive strength (4±0.1 MPa) was achieved in cement waste form containing 50wt% soil waste. After the water immersion test for 90 days, the compressive strength of cement waste form with 50wt% soil waste increased to 7.5±0.6 MPa, meeting the waste form acceptance criteria in the repository. It is believed that long-term water immersion test contributed to the additional curing and hydration reaction, resulting in the enhanced compressive strength. As a result of the TCLP test, the released amount of As, Ba, Cd, Cr, Pb, Se, Co, Cs, and Sr was less than the domestic and international standards. These results imply that cement waste form can be a promising candidate for the solidification of radioactive soil wastes.

      • KCI등재

        Estimation of Reward Probability in the Fronto-parietal Functional Network: An fMRI Study

        Shin, Yeonsoon,Kim, Hye-young,Min, Seokyoung,Han, Sanghoon Korean Society for Emotion and Sensibility 2017 감성과학 Vol.20 No.4

        We investigated the neural representation of reward probability recognition and its neural connectivity with other regions of the brain. Using functional magnetic resonance imaging (fMRI), we used a simple guessing task with different probabilities of obtaining rewards across trials to assay local and global regions processing reward probability. The results of whole brain analysis demonstrated that lateral prefrontal cortex, inferior parietal lobe, and postcentral gyrus were activated during probability-based decision making. Specifically, the higher the expected value was, the more these regions were activated. Fronto-parietal connectivity, comprising inferior parietal regions and right lateral prefrontal cortex, conjointly engaged during high reward probability recognition compared to low reward condition, regardless of whether the reward information was extrinsically presented. Finally, the result of a regression analysis identified that cortico-subcortical connectivity was strengthened during the high reward anticipation for the subjects with higher cognitive impulsivity. Our findings demonstrate that interregional functional involvement is involved in valuation based on reward probability and that personality trait such as cognitive impulsivity plays a role in modulating the connectivity among different brain regions.

      • KCI등재

        Estimation of Reward Probability in the Fronto-parietal Functional Network: An fMRI Study

        ( Yeonsoon Shin ),( Hye-young Kim ),( Seokyoung Min ),( Sanghoon Han ) 한국감성과학회 2017 감성과학 Vol.20 No.4

        We investigated the neural representation of reward probability recognition and its neural connectivity with other regions of the brain. Using functional magnetic resonance imaging (fMRI), we used a simple guessing task with different probabilities of obtaining rewards across trials to assay local and global regions processing reward probability. The results of whole brain analysis demonstrated that lateral prefrontal cortex, inferior parietal lobe, and postcentral gyrus were activated during probability-based decision making. Specifically, the higher the expected value was, the more these regions were activated. Fronto-parietal connectivity, comprising inferior parietal regions and right lateral prefrontal cortex, conjointly engaged during high reward probability recognition compared to low reward condition, regardless of whether the reward information was extrinsically presented. Finally, the result of a regression analysis identified that cortico-subcortical connectivity was strengthened during the high reward anticipation for the subjects with higher cognitive impulsivity. Our findings demonstrate that interregional functional involvement is involved in valuation based on reward probability and that personality trait such as cognitive impulsivity plays a role in modulating the connectivity among different brain regions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼