RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Viscozyme® L를 이용한 인삼유래 사포닌으로부터 Minor Ginsenoside F2의 생산

        김도연 ( Do Yeon Kim ),박창수 ( Chang Su Park ),김영수 ( Yeong Su Kim ) 한국키틴키토산학회 2016 한국키틴키토산학회지 Vol.21 No.2

        Ginsenoside는 인삼의 주요 약리성분으로 다양한 효능이 알려져 있다. 특히 저분자량 형태의 minor ginsenoside는 majorginsenoside에 비해 흡수율이 높고 높은 생리활성으로 알려져있지만 인삼중에 존재하지 않거나 극 미량만 존재하기 때문에 minor ginsenoside를 생산하기 위한 연구가 높은 주목을 받고있다. 본 연구에서는 minor ginsenoside 중 하나인 ginsenosideF2를 생물전환을 통해 생산하기 위해 상업용 효소인 Viscozyme® L을 이용하여 최적 효소 반응 조건을 확립하고 인삼 추출물을 이용하여 ginsenoside F2 생산 연구를 진행하였다. GinsenosideF2 생산을 위한 효소 최적 반응 조건은 pH 6.0, 50oC로 최적 조건 하에서 인삼 추출물을 이용한 ginsenoside F2 생산은 8시간에 5.9 mg/ml의 ginsenoside F2를 생산하여 0.7 g/L/h의 생산성을 나타내었고 이때 전환율은 95.6% (mole/mole)이었다. 또한 Viscozyme® L의 ginsenoside에 대한 기질 특이성은 ginsenoside 의 3, 6, 20번 탄소의 외부 구성당만을 가수분해하고 내부 구성당에 대한 활성은 없는 것으로 확인되어 minor ginsenoside의 선택적 생산에 유용할 것으로 생각된다. The commercial enzyme Viscozyme ® L was used for bioconversion of major PPD type ginsenosides to ginsenoside F2. The optimal conditions for production of ginsenoside F2 from PPD type ginsenosides by Viscozyme ® L were pH 6.0, 50°C, and 60 U/mL enzyme. Interestingly, the enzyme hydrolyzed only outer β-(1,2)-D-glucose linkage at C-3, C-6, and C-20 position in ginsenosides. Under optimum conditions, the enzyme converted ginsenoside Rb1, Rb2, Rc, and Rd in ginseng extract to ginsenoside F2 with a molar yield of over 95% and productivity of 0.7 g/L/h within 8 h.

      • KCI등재

        Ginsenoside-Rb2 and 20(S)-Ginsenoside-Rg3 from Korean Red Ginseng Prevent Rotavirus Infection in Newborn Mice

        ( Hui Yang ),( Kwang-hoon Oh ),( Hyun Jin Kim ),( Young Ho Cho ),( Yung Choon Yoo ) 한국미생물생명공학회(구 한국산업미생물학회) 2018 Journal of microbiology and biotechnology Vol.28 No.3

        It is well known that Korean red ginseng has various biological activities. However, there is little knowledge about the antiviral activity of Korean red ginseng and its ginsenosides. In this study, we addressed whether oral administration of ginsenoside-Rb2 and -Rg3 is able to protect against rotavirus (RV) infection. The protective effect of ginsenosides against RV infection was examined using an in vivo experiment model in which newborn mice (10-dayold) were inoculated perorally (p.o.) with 1.5 × 10<sup>6</sup> plaque-forming units/mouse of RV strain SA11. When various dosages of ginsenoside-Rb2 (25-250 mg/kg) were administered 3days, 2 days, or 1 day before virus challenge, treatment with this ginsenoside at the dosage of 75 mg/kg 3days before virus infection most effectively reduced RV-induced diarrhea. In addition, consecutive administration of ginsenoside-Rb2 (75 mg/kg) at 3 days, 2 days, and 1 day before virus infection was more effective than single administration on day -3. The consecutive administration of ginsenoside-Rb2 also reduced virus titers in the bowels of RVinfected mice. In an experiment to compare the protective activity between ginsenoside-Rb2 and its two hydrolytic products (20(S)- and 20(R)-ginsenoside-Rg3), 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, prevented RV infection. These results suggest that ginsenoside-Rb2 and its hydrolytic product, 20(S)-ginsenoside-Rg3, are promising candidates as an antiviral agent to protect against RV infection.

      • <i>PgLOX6</i> encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in <i>Panax ginseng</i>

        Rahimi, Shadi,Kim, Yu-Jin,Sukweenadhi, Johan,Zhang, Dabing,Yang, Deok-Chun Oxford University Press 2016 Journal of experimental botany Vol.67 No.21

        <▼1><P><B>Highlight</B></P><P>In ginseng, jasmonic acid promotes expression of the biosynthetic genes for ginsenosides. <I>PgLOX6</I> encodes a lipoxygenase that is required for biosynthesis of jasmonic acid and its overexpression increases ginsenoside levels.</P></▼1><▼2><P>Ginsenosides, the valuable pharmaceutical compounds in <I>Panax ginseng</I>, are triterpene saponins that occur mainly in ginseng plants. It was shown that <I>in vitro</I> treatment with the phytohormone jasmonic acid (JA) is able to increase ginsenoside production in ginseng plants. To understand the molecular link between JA biosynthesis and ginsenoside biosynthesis, we identified a JA biosynthetic 13-lipoxygenase gene (<I>PgLOX6</I>) in <I>P. ginseng</I> that promotes ginsenoside production. The expression of <I>PgLOX6</I> was high in vascular bundles, which corresponds with expression of ginsenoside biosynthetic genes. Consistent with the role of <I>PgLOX6</I> in synthesizing JA and promoting ginsenoside synthesis, transgenic plants overexpressing <I>PgLOX6</I> in Arabidopsis had increased amounts of JA and methyl jasmonate (MJ), increased expression of triterpene biosynthetic genes such as <I>squalene synthase</I> (<I>AtSS1</I>) and <I>squalene epoxidase</I> (<I>AtSE1</I>), and increased squalene content. Moreover, transgenic ginseng roots overexpressing <I>PgLOX6</I> had around 1.4-fold increased ginsenoside content and upregulation of ginsenoside biosynthesis-related genes including <I>PgSS1</I>, <I>PgSE1</I>, and <I>dammarenediol synthase</I> (<I>PgDDS</I>), which is similar to that of treatment with MJ. However, MJ treatment of transgenic ginseng significantly enhanced JA and MJ, associated with a 2.8-fold increase of ginsenoside content compared with the non-treated, non-transgenic control plant, which was 1.4 times higher than the MJ treatment effect on non-transgenic plants. These results demonstrate that <I>PgLOX6</I> is responsible for the biosynthesis of JA and promotion of the production of triterpenoid saponin through up-regulating the expression of ginsenoside biosynthetic genes. This work provides insight into the role of JA in biosynthesizing secondary metabolites and provides a molecular tool for increasing ginsenoside production.</P></▼2>

      • KCI등재

        Ginsenoside Rg1 전환에 대한 에탄올 농도와 유기산의 영향

        장귀영(Gwi Yeong Jang),김민영(Min Young Kim),이윤정(Yoon Jeong Lee),이상훈(Sang Hoon Lee),황인국(In Guk Hwang),최재훈(Jehun Choi),신유수(Yu Su Shin),이준수(Junsoo Lee),정헌상(Heon Sang Jeong) 한국식품영양과학회 2018 한국식품영양과학회지 Vol.47 No.8

        본 연구에서는 유기산과 에탄올 농도가 인삼의 주요 사포닌인 ginsenoside Rg1의 전환에 미치는 영향을 확인하기 위하여, ginsenoside Rg1 용액에 유기산(citric acid, malic acid 및 succinic acid)과 에탄올 농도를 달리하여 130°C에서 가열 후 Rg1의 변화를 확인하였다. Ginsenoside Rg1은 증류수 조건에서는 130°C에서도 매우 안정하였으며, 유기산이 존재하는 조건에서는 minor ginsenoside로 쉽게 전환되었다. Rg1으로부터 가수분해 반응으로 C-20에 결합한 glucose가 이탈한 Rh1(S) 및 Rh1(R)이 생성되고 가수분해 된 ginsenoside로부터 탈수반응으로 C-20의 OH기가 이탈한 Rk3와 Rh4가 생성되었으며, ginsenoside Rg1의 전환반응은 유기산의 종류와 농도 및 에탄올 농도에 의존적이었다. 또한, Rg1과 Rg1으로부터 생성되는 ginsenoside, 유기산, 에탄올 및 가열시간 간에 유의적인 상관관계를 나타내었다. 이러한 결과는 인삼의 추출용매로서 흔히 사용되는 에탄올이 가열과정에서 ginsenoside의 전환에 많은 영향을 미칠 있으며, 에탄올 농도의 조절이 인삼가공품의 품질지표성분인 ginsenoside 조성을 조절하는 데 활용될 수 있을 것으로 판단된다. This study was performed to determine the influence of ethanol concentration and organic acids on conversion of ginsenoside Rg1 under heating. Ginsenoside Rg1 solution was treated with various ethanol concentrations (0∼50%) and organic acids (0∼3 mM of citric acid, malic acid, and succinic acid) at 130°C, then analyzed using a HPLC-UVD. The ginsenoside Rg1 was highly stable at 130°C in distilled water, whereas Rg1 was readily converted to minor ginsenosides, including Rh1(S), Rh1(R), Rk3, and Rh4 in distilled water with organic acids. The conversion ratio of ginsenosides increased with increasing acid concentration and heating time, whereas it decreased when ethanol concentration increased. The conversion level of Rg1 differed according to types of organic acids. The independent variables (heating time, organic acid, and ethanol concentration) were significantly correlated with ginsenoside conversion (P<0.001). Taken together, these results indicate that the ginsenoside conversion level differed according to ethanol concentration under the same conditions. Therefore, ethanol could be used as a regulator for the conversion of ginsenosides during ginseng extraction and processing.

      • KCI등재

        인삼유래 Ginsenoside Rg3에 의한 항-주름 효과

        김성우 ( Sung-woo Kim ),정지헌 ( Ji-hean Jeong ),조병기 ( Byoung-kee Jo ) 대한화장품학회 2004 대한화장품학회지 Vol.30 No.2

        인삼(Panax ginseng C. A Meyer)의 뿌리는 전통적인 항-노화 및 항-주름제로 동양에서 사용되어 왔다. 그러나 인삼의 어떤 성분이 주름 형성을 억제하는데 효과적인지는 아직 밝혀지지 않았다. 최근 인삼의 주요 활성 성분으로 생각되는 ginsenosides가 20가지 이상 분리되었다. 이들 중 본 연구원들은 인삼에 의한 항-주름의 작용기작을 밝히기 위해 세포간질(extracellular matrix, ECM) 물질대사에 있어 ginsenoside Rg3의 진피에서의 효과를 시험하였다. 본 연구에서, ginsenoside Rg3의 항-주름 효과를 연구하기 위해 진피의 세포간질 구성 성분과 성장 인자를 ELISA (enzyme-1inked immunosorbent assay) 측정법으로 평가하였다. Ginsenoside Rg3은 human dermal fibroblasts 배양에서 type I procollagen과 fibronectin (FN) 생합성을 농도 증가에 비례하여 촉진시키고(p < 0.05, n=3), 농도에 비례하여 TGF-β1 수준을 증가(p < 0.05, n=3) 시키는 것으로 밝혀졌다. RT-PCR 분석에서 AP-1 전사 인자(transcription factor)의 일부인 c-Jun의 mRNA 수준이 human dermal fibroblasts에서 ginsenoside Rg3에 의해 감소되었다. 이들 결과들은 ginsenoside Rg3이 fibroblasts에서 TGF-β1과 AP-1의 발현을 변화시킴으로써 type I collagen과 FN 합성을 촉진시킴을 보여준다. The root of Panax ginseng C. A. Meyer has been used as a traditional anti-aging and anti-wrinkle agent in the Orient. However, it is still unknown which component of ginseng is effective at suppressing wrinkle formation. Recently at least twenty ginsenosides regarded as the main active ingredients of ginseng have been isolated. Among them, we examined the effect of ginsenoside Rg3 on dermal ECM metabolism to elucidate the mechanism of anti-wrinkle by ginseng. In our study, to investigate the anti-wrinkle effect of the ginsenoside Rg3, ECM component and growth factor in dennis were evaluated by ELISA assay. Ginsenoside Rg3 was found to stimulate type I procollagen and fibronectin (FN) biosynthesis in a dose-dependent manner in normal human fibroblast culture (p < 0.05, n =3), and dose-dependently enhance TGF-β1 level (p < 0.05, n =3). In RT-PCR analysis mRNA level of c-Jun, a member of AP-1 transcription factor, was reduced by ginsenoside Rg3 in normal human fibroblast culture. These results indicate that ginsenoside Rg3 stimulates type I collagen and FN synthesis through the changes of TGF-β1 and AP-1 expression in fibroblasts.

      • SCIESCOPUSKCI등재

        Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1

        Vo, Hoang Tung,Cho, Jae Youl,Choi, Yong-Eui,Choi, Yong-Soon,Jeong, Yeon-Ho The Korean Society of Ginseng 2015 Journal of Ginseng Research Vol.39 No.4

        Background: Ginsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1. Methods: Ginsenoside Rb1 was heated using an isothermal machine at $80^{\circ}C$ and $100^{\circ}C$ and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation. Results: The rate constants were $0.013h^{-1}$ and $0.073h^{-1}$ for the degradation of ginsenosides Rb1 and Rg3 at $80^{\circ}C$, respectively. The corresponding rate constants at $100^{\circ}C$ were $0.045h^{-1}$ and $0.155h^{-1}$. The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value. Conclusion: The optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below $180^{\circ}C$, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min.

      • SCIESCOPUSKCI등재

        Biotransformation of Ginsenoside Rb<sub>1</sub> to Prosapogenins, Gypenoside XVII, Ginsenoside Rd, Ginsenoside F<sub>2</sub>, and Compound K by Leuconostoc mesenteroides DC102

        Quan, Lin-Hu,Piao, Jin-Ying,Min, Jin-Woo,Kim, Ho-Bin,Kim, Sang-Rae,Yang, Dong-Uk,Yang, Deok-Chun The Korean Society of Ginseng 2011 Journal of Ginseng Research Vol.35 No.3

        Ginsenoside $Rb_1$ is the main component in ginsenosides. It is a protopanaxadiol-type ginsenoside that has a dammarane-type triterpenoid as an aglycone. In this study, ginsenoside $Rb_1$ was transformed into gypenoside XVII, ginsenoside Rd, ginsenoside $F_2$ and compound K by glycosidase from Leuconostoc mesenteroides DC102. The optimum time for the conversion was about 72 h at a constant pH of 6.0 to 8.0 and the optimum temperature was about $30^{\circ}C$. Under optimal conditions, ginsenoside $Rb_1$ was decomposed and converted into compound K by 72 h post-reaction (99%). The enzymatic reaction was analyzed by highperformance liquid chromatography, suggesting the transformation pathway: ginsenoside $Rb_1$ ${\rightarrow}$ gypenoside XVII and ginsenoside Rd${\rightarrow}$ginsenoside $F_2{\rightarrow}$compound K.

      • KCI등재

        Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1

        Hoang Tung Vo,조재열,최용의,최용순,정연호 고려인삼학회 2015 Journal of Ginseng Research Vol.39 No.4

        Background: Ginsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1. Methods: Ginsenoside Rb1 was heated using an isothermal machine at 80C and 100C and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation. Results: The rate constants were 0.013 h1 and 0.073 h1 for the degradation of ginsenosides Rb1 and Rg3 at 80C, respectively. The corresponding rate constants at 100C were 0.045 h1 and 0.155 h1 . The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/ mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value. Conclusion: The optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below 180C, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min. C

      • KCI등재

        Ginsenoside Rf에 대한 상대감응인자를 이용한 11종 진세노사이드의 함량분석

        이상명 한국피부과학연구원 2018 아시안뷰티화장품학술지 Vol.16 No.2

        Purpose: To establish a simple and accurate quantitative method for analyzing ginsenosides, a functional material used in the cosmetics industry, the relative response factors of the high performance liquid chromatography (HPLC) signals of each ginsenoside were analyzed and compared to the ginsenoside Rf. Methods: The relative response factor for the simultaneous analysis of 11 species of ginsenosides, including ginsenoside Rf, was determined, and their quantitative validity was examined. The concentrations of ginsenosides contained in samples of red ginseng were derived by an external standard method from the calibration curve of a standard solution prepared from the 11 species of ginsenosides. The relative response factors were calculated from the concentrations of ginsenosides in the 58 red ginseng samples. Results: The relative response factors (ki /Rf) of each ginsenoside relative to ginsenoside Rf, which is thermally stable and considered valid as a reference for relative response, are as follows: Rg1 (1.07), Re (1.26), Rh1 (0.83), Rg2 (1.50), Rb1 (1.51), Rc (1.51), Rb2 (1.45), Rd (1.22), Rg3 (S; 1.02), and Rg3 (R; 0.95). In addition, the concentration of each ginsenoside converted by their relative response factor (ki /Rf ) was quantitatively consistent with the concentration analyzed by the external standard method. Conclusion: Using quantitatively wellcontrolled ginsenoside Rf as a standard, we analyzed the ginsenoside contents of 11 kinds of ginsenosides samples. The exact contents of ginsenoside Rf in ginseng samples were determined by an external standard method. The concentrations of the 10 ginsenosides Rg1, Re, Rg2, Rh1, Rb1, Rc, Rb2, Rd, Rg3 (S), and Rg3 (R) were determined by converting their relative response factors (ki /Rf ). 목적: 인삼에서 화장품 기능성 물질인 진세노사이드(ginsenosides)의 간단하고 정확한 high performance liquid chromatography (HPLC) 정량분석방법을 확립하기 위하여 11종 진세노사이드의 ginsenoside Rf에 대한 상대감응인자를 분석하였다. 방법: Ginsenoside Rf에 대한 10 종 진세노사이드의 상대감응인자를 결정하고, 그 정량적 타당성을 조사하였다. 58개 홍삼 분말시료에함유된 진세노사이드의 농도는 정밀하게 제조된 11 종의 진세노사이드(ginsenoside Rg1, Re, Rf, Rh1, Rg2, Rb1, Rc, Rb2, Rd, Rg3 (S), Rg3 (R)) 표준용액의 검량선을 작성하여 외부 표준물질법에 의해 유도하였다. Ginsenoside Rf에 대한 10종 진세노사이드의 상대감응인자는 58개의 홍삼분말시료에 포함된 각 진세노사이드 농도와 피크면적, ginsenoside Rf의 농도와 피크면적을 이용하여 상대감응인자 환산식에 대입하여 구하였다. 결과: 열화학적으로 안정하여 상대감응 기준물질로서 타당한 것으로 인정되는ginsenoside Rf에 대한 각 진세노사이드의 상대감응인자(ki /Rf )는 58종 홍삼 분말시료 분석에 의하여 다음과 같은 값을 나타내었다. Ginsenosides Rg1 (1.07), Re (1.29), Rh1 (0.83), Rg2 (1.50), Rb1 (1.51), Rc (1.51), Rb2 (1.45), Rd (1.22), Rg3 (S; 1.02) 및 Rg3 (R; 0.95). 또한 상대감응인자에 의해 환산된 각 진세노사이드의 농도는 외부 표준물질방법에 의해 분석된 농도와 정량적으로 일치하였다. 결론: Ginsenoside Rg1을 포함한 11종 진세노사이드의 함량을 인삼 시료로부터 분석하고자 할 때에 우선 정량적으로 잘관리된 ginsenoside Rf를 표준물질로 이용하고 외부 표준물질법으로써 ginsenoside Rf의 정확한 함량을 구한 후 나머지 10종 성분(ginsenoside Rg1, Re, Rg2, Rh1, Rb1, Rc, Rb2, Rd, Rg3 (S), Rg3 (R))의 함량을 각 상대감응인자(ki /Rf )를 이용하여 구하면 각 인삼 시료로부터 용이하게 정량적인 함량을 파악할 수 있다.

      • KCI등재

        인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량

        양덕춘,양계진 한국식물생명공학회 2000 식물생명공학회지 Vol.27 No.6

        The patterns and contents of ginsenosides were examined in normal root parts and hairy root lines of Panax ginseng C. A. Meyer. Ginsenoside-Rb$_1$, -Rb$_2$, -Rc, -Rd, -Re, -Rf, -Rg$_1$, -Rg$_2$ were detected in normal roots and hairy roots of ginseng. The patterns and contents of ginsenosides in that were very difference each other. The contents of total ginsenoside of hairy root (KGHR-1) was 17.42 mg/g dry wt, it's highest compared to others. Ginsenoside contents of hairy root (KGHR-1) was higher on ginsenoside-Rd, Rg$_1$, KGHR-5 was higher on ginsenoside-Rb$_1$, Rg$_1$, and KGHR-8 was higher on ginsenoside-Rd, Re than others. The contents of total ginsenosides on 6 years old ginseng cultured in the field were high in the order of main root, lateral root and fine roots, and content of ginsenosides in fine roots was 3.2 times higher than that in main root. The ratio of ginsenoside-Rg$_1$to total ginsenosides were about 3.43%, 8.68% and 14.18% respectively on fine root, lateral root and main root, it's very lower than that in hairy roots. It is suggested that specific ginsenosides can be produce in cultures of ginseng hairy roots. 생장이 우수한 인삼모상근 세포주 (KGHR-1, KGHR-5, KGHR-8) 및 6년생 인삼근의 부위별로 ginsenoside 양상 및 생성특성을 조사하였다. 인삼모상근 및 6년생 인상근에서 ginsenoslde-Rb$_1$, Rb$_2$, Rc, Rd, Re, Rf, Rg$_1$, Rg$_2$을 확인하였으며, 인삼모상근 세포주간 및 인삼근 부위별로 ginsenoside의 함량은 큰 차이를 나타내었다. 8종류의 ginsenoside함량이 가장 높은 인삼모상근은 KGHR-1 세포주로 17.42 mg/g dry wt와 함량을 나타내었다. 모상근세포주 KGHR-1은 ginsenoside-Rd, Rg$_1$을, KGHR-5는 ginsenoside-Rb$_1$, Rg$_1$을, 그리고 KGHR-8은 ginsenoside-Rd, Re을 상대적으로 많이 생성하는 특징을 지니고 있으며, ginsenoside-Rf의 생성은 매우 낮았다. 6년생 인삼근의 부위별 ginsenoside의 함량은 주근, 지근, 세근순으로 많았으며, 주근에서 ginsenoside-Rc의 생성은 ginsenoside의 50.99%로써 모상근 세포주의 4.90~6.89%보다 매우 높았다. 6년생 인삼근의 총 ginsenoside에 대한 ginsenoside-Rg$_1$의 비율은 3.43~14.18% 수준으로 주근, 지근, 세근순으로 급격히 감소하였으며, 모상관의 17.14~24.43%와 비교할 때 매우 낮은 수준을 나타내었다. 따라서 인삼모상근 배양을 통하여 특정 ginsenosides생산이 가능하리라 생각된다.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼