RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        MR/PET을 이용한 UTE MR 펄스 시퀀스 기반 팬텀 내 주입물질에 따른 PET 영상 화질 평가

        박찬록,이영진 대한자기공명기술학회 2022 대한자기공명기술학회지 Vol.32 No.1

        Hybrid systems are widely used in the clinical field. One hybrid system employed is magnetic (MR)/positron emission tomography (PET), which is required for the simultaneous acquisition of anatomic and function information. Water is injected into material to fabricate the MR/PET phantom. However, water has lower permittivity and causes artifacts when acquiring the MR signal. Thus, the alternative material must acquire both the MR and PET signals in the phantom. Additionally, the attenuation correction technique, which can improve PET image quality, is applied to an ultrashort TE (UTE) MR pulse sequence. Hence, this study evaluated attenuation-corrected PET image quality according to injected material such as NaCl and NaCl + NiSO4 by acquiring the UTE MR pulse sequence. For the quantitative analysis, contrast recovery (CR), signal-to-noise ratio (SNR), and coefficient of variation (COV) were used. According to the results, the PET image quality with a UTE MR pulse sequence injected into NaCl material for CR, SNR, and COV was better by 1.38, 1.18, and 1.18 times than t hat for NaCl + N iSO4 m aterial with a UTE MR pulse sequence. We confirmed the compatibility of t he MR and PET signals using the MR/PET phantom. 자기공명영상장치(magnetic resonance, MR)/양전자 방출 단층촬영 장치(positron emission tomography, PET)는 두 가지 의료장치가 결합한 하이브리드 시스템으로써 MR의 해부학적 정보와 PET의 기능적 정보를 동시에 획득할 수 있는 최신 의료장치이다. 일반적으로 MR/PET의 우수한 팬텀 영상의 질 획득과 평가를 위하여 팬텀 내에 전기전도도가 낮은 액체 물질과 방사성동위원소를 주입하고, UTE MR 펄스 시퀀스를 적용한 감쇠 보정된 PET 영상을 획득한다. 본 연구의 목적은 MR/PET 전용 팬텀에서 물 대체물질로써 NaCl과 NaCl+NiSO4 물질에 따른 UTE MR 펄스 시퀀스를 획득하고, 감쇠 보정된 PET 영상의 질을 평가하고자 한다. 정량적 분석을 위하여 대조도 회복비(contrast recovery, CR), 신호대잡음비(signal to noise ratio, SNR), 변동 계수(coefficient of variation, COV)를 적용하였다. NaCl 물질 기반 UTE MR 펄스 시퀀스를 적용한 PET 영상의 질이 CR은 1.38배, SNR은 1.18배가 증가하였고, COV는 1.18배 감소함을 확인할 수 있었다. 결론적으로, MR/PET 전용 팬텀을 활용한 신호의 획득 가능성을 확인하였고, UTE MR 펄스 시퀀스는 해부학적 정보와 PET 영상의 질 향상에 필수적임을 확인할 수 있었다.

      • SCISCIESCOPUS

        Generation of Structural MR Images from Amyloid PET: Application to MR-Less Quantification

        Choi, Hongyoon,Lee, Dong Soo Society of Nuclear Medicine 2018 The Journal of nuclear medicine Vol.59 No.7

        <P>Structural MR images concomitantly acquired with PET images can provide crucial anatomic information for precise quantitative analysis. However, in the clinical setting, not all the subjects have corresponding MR images. Here, we developed a model to generate structural MR images from amyloid PET using deep generative networks. We applied our model to quantification of cortical amyloid load without structural MR. <B>Methods:</B> We used florbetapir PET and structural MR data from the Alzheimer Disease Neuroimaging Initiative database. The generative network was trained to generate realistic structural MR images from florbetapir PET images. After the training, the model was applied to the quantification of cortical amyloid load. PET images were spatially normalized to the template space using the generated MR, and then SUV ratio (SUVR) of the target regions was measured by predefined regions of interest. A real MR-based quantification was used as the gold standard to measure the accuracy of our approach. Other MR-less methods—a normal PET template–based, a multiatlas PET template–based, and a PET segmentation–based normalization/quantification—were also tested. We compared the performance of quantification methods using generated MR with that of MR-based and MR-less quantification methods. <B>Results:</B> Generated MR images from florbetapir PET showed signal patterns that were visually similar to the real MR. The structural similarity index between real and generated MR was 0.91 ± 0.04. The mean absolute error of SUVR of cortical composite regions estimated by the generated MR-based method was 0.04 ± 0.03, which was significantly smaller than other MR-less methods (0.29 ± 0.12 for the normal PET template, 0.12 ± 0.07 for the multiatlas PET template, and 0.08 ± 0.06 for the PET segmentation–based methods). Bland–Altman plots revealed that the generated MR-based SUVR quantification was the closest to the SUVRs estimated by the real MR-based method. <B>Conclusion:</B> Structural MR images were successfully generated from amyloid PET images using deep generative networks. Generated MR images could be used as templates for accurate and precise amyloid quantification. This generative method might be used to generate multimodal images of various organs for further quantitative analyses.</P>

      • $^{18}F$-FDG PET 영상의 정량적 비교: PET/MR VS PET/CT

        이무석,임영현,김재환,최규오,Lee, Moo Seok,Im, Young Hyun,Kim, Jae Hwan,Choe, Gyu O 대한핵의학기술학회 2012 핵의학 기술 Vol.16 No.2

        Purpose : More recently, combined PET/MR scanners have been developed in which the MR data can be used for both anatometabolic image formation and attenuation correction of the PET data. For quantitative PET information, correction of tissue photon attenuation is mandatory. The attenuation map is obtained from the CT scan in the PET/CT. In the case of PET/MR, the attenuation map can be calculated from the MR image. The purpose of this study was to assess the quantitative differences between MR-based and CT-based attenuation corrected PET images. Materials and Methods : Using the uniform cylinder phantom of distilled water which has 199.8 MBq of $^{18}F$-FDG put into the phantom, we studied the effect of MR-based and CT-based attenuation corrected PET images, of the PET-CT using time of flight (TOF) and non-TOF iterative reconstruction. The images were acquired from 60 minutes at 15-minute intervals. Region of interests were drawn over 70% from the center of the image, and the Scanners' analysis software tools calculated both maximum and mean SUV. These data were analyzed by one way-anova test and Bland-Altman analysis. MR images are segmented into three classes(not including bone), and each class is assigned to each region based on the expected average attenuation of each region. For clinical diagnostic purpose, PET/MR and PET/CT images were acquired in 23 patients (Ingenuity TF PET/MR, Gemini TF64). PET/CT scans were performed approximately 33.8 minutes after the beginnig of the PET/MR scans. Region of interests were drawn over 9 regions of interest(lung, liver, spleen, bone), and the Scanners' analysis software tools calculated both maximum and mean SUV. The SUVs from 9 regions of interest in MR-based PET images and in CT-based PET images were compared. These data were analyzed by paired t test and Bland-Altman analysis. Results : In phantom study, MR-based attenuation corrected PET images generally showed slightly lower -0.36~-0.15 SUVs than CT-based attenuation corrected PET images (p<0.05). In clinical study, MR-based attenuation corrected PET images generally showed slightly lower SUVs than CT-based attenuation corrected PET images (excepting left middle lung and transverse Lumbar) (p<0.05). And percent differences were -8.01.79% lower for the PET/MR images than for the PET/CT images. (excepting lung) Based on the Bland-Altman method, the agreement between the two methods was considered good. Conclusion : PET/MR confirms generally lower SUVs than PET/CT. But, there were no difference in the clinical interpretations made by the quantitative comparisons with both type of attenuation map. 감쇠 보정법과 산란 보정법은 정량적인 PET검사를 하기 위한 필수적인 방법이다. PET/CT에서는 PET에서 사용하는 소멸방사선과 CT의 X선이 같은 전리 방사선이기 때문에 측정에 의한 CT의 Hounsfield Units를 감쇠 계수로 전환해서 감쇠보정, 산란보정이 가능하다. 그러나 PET/MR에서 MR는 강한 자기장을 걸어 수소밀도와 조직의 이완률차이로 되돌아오는 변화로 신호를 획득하기 때문에 CT처럼 전환하는 것은 불가능하다. Ingenuity TF PET/MR장비는 soft tissue, lung, air로 3구역을 segment하여 MR 감쇠지도를 얻는다. 이에 신호획득원리가 완전히 상이한 PET/MR과 PET/CT에 대한 정량적 평가를 하고자 한다. Phantom study로 uniform cylinder phantom에 증류수 9293 ml와 $^{18}F$-FDG 199.8 MBq를 넣고 magnetic stirrer를 이용하여 균일하게 교반한 후 60 min부터 15분 간격으로 Ingenuity TF PET/MR, Gemini TF 64, Biograph Truepoint 40를 이용하여 각각 single-bed로 2 min씩으로 영상을 얻었다. phantom의 중심부분 10개의 slice에 대한 동일한 관심영역을 그려 SUVs를 측정하고 평균, 표준편차를 구하였다. 그리고 임상적용을 위한 평가로 $^{18}F$-FDG 섭취가 정상인 환자를 대상으로 90 sec/bed씩 Ingenuity TF PET/MR을 시행한 후 Gemini TF 64 PET/CT 검사를 실시하였다. 각각의 data에서 lung, liver, spleen, bone 위치에 동일한 관심영역을 그려 SUVs 최대값과 평균값을 측정하고, %Difference를 구하였다. 또한, PET 장비들 사이에서의 일치도를 평가하기 위해 Bland-Altman plot 분석을 하였다. Phantom study에서 3가지 장비에서 측정한 SUVs 최대값과 평균값은 Biograph Truepoint 40, Gemini TF 64, Ingenuity TF PET/MR 순으로 높은 것을 확인할 수 있었다. patients study에서는 MR과 CT로 감쇠 보정한 PET장비의 SUVs 최대값과 평균값이 서로 유의미한 차이가 없었다.(p<0.05) Lung에서 left middle lobe과 transverse bone을 제외하고는 MR로 감쇠 보정한 PET의 SUVs가 대체로 낮았다. Bland Altman Plot으로 분석한 결과 대부분의 항목에서 95% 신뢰구간의 일치한계선내에서 측정되었다. PET/CT에서는 time of flight 기능을 가진 PET이 SUVs가 낮게 측정되었다. PET/MR과 PET/CT에서 알아본 SUVs차이는 MR을 이용한 분할 감쇠 보정방법이 CT를 사용한 측정 감쇠보정방법보다 SUVs가 낮게 측정되었다. 이러한 다른 감쇠 보정법에 의한 SUVs의 차이는 임상적으로는 용인할 수준에 있었지만, 향후 PET/MR와 PET/CT의 정량적인 값을 비교 분석할 때 PET 장비들간의 특성은 고려할 필요가 있다.

      • PET/CT 검사에 있어서 MR Torso Coil의 CT 감쇄보정에 대한 영향 평가

        이승재,반영각,오신현,강천구,임한상,김재삼,이창호,서수현,박용성,Lee, Seung Jae,Bahn, Young Kag,Oh, Shin Hyun,Gang, Cheon-Gu,Lim, Han Sang,Kim, Jae Sam,Lee, Chang Ho,Seo, Soo-Hyun,Park, Yong Sung 대한핵의학기술학회 2012 핵의학 기술 Vol.16 No.2

        PET과 융합된 MR 영상에서 MR coil은 PET 영상용 감쇄보정에 있어서 위치 정보 수집에 관한 오류를 극복하기 위한 노력이 시도 되어 왔다. 본원에서는 이런 문제점을 보완한 Three modality system (PET/CT +MR)을 이용하고 있다. 이 논문에서는 MR torso coil이 CT 감쇄보정에 미치는 영향을 평가하였다. MR torso coil을 장착하고 CT로 감쇄보정한 PET 영상에서 인공물에 대한 평가를 하였다. 균일도 평가용 팬텀과 1994 NEMA 실린더 팬텀을 사용하여, CT의 관전압과 관전류를 변경해가며 표준화섭취계수에 대한 변화를 추적하였다. MR torso coil안에 있는 금속 물질로 인한 줄무늬 인공물이 관찰되었다. CT 검사에 있어서 관전압과 관전류를 변화 시키면 선 감쇄계수도 일정하게 변화하였다. 관전압과 관전류의 수치가 높아짐에 따라 PET 영상에서의 표준화섭취계수가 증가하는 것을 볼 수 있었다. PET/CT 검사 시, MR torso coil은 금속으로 인한 줄무늬 인공물을 생성하며, 감쇄보정에 있어서 잠재적인 오류를 불러올 수 있다. 이와 같은 오류를 감소시키기 위해서는 첫째, 감쇄보정 알고리즘의 보완, 둘째, MR coil을 사용하지 않은 검사방법의 연구, 셋째, PET/CT 감쇄보정에 영향을 주지 않는 MR coil소재의 개발 등이 요구된다. Purpose : Combined MR/PET scanners that use the MRI for PET AC face the challenge of absent surface coils in MR images and thus cannot directly account for attenuation in the coils. To make up for the weak point of MR attenuation correction, Three Modality System (PET/CT +MR) were used in Severance hospital. The goal of this work was to investigate the effects of MR Torso Coil on CT attenuation correction for PET. Materials and Methods : PET artifacts were evaluated when the MR Torso Coil was present of CTAC data with changing various kV and mA in uniformity water phantom and 1994 NEMA cylinderical phantom. They evaluated and compared the following two scenarios: (1) The uniform cylinder phantom and the MR Torso Coil scanned and reconstructed using CT-AC; (2) 1994 NEMA cylinderical phantom and the MR Torso Coil scanned and reconstructed using CT-AC. Results : Streak artifacts were present in CT images containing the MR Torso Coil due to metal components. These artifacts persisted after the CT images were converted for PET-AC. CT scans tended to over-estimate the linear attenuation coefficient when the kV and mA is increasing of the metal components when using conventional methods for converting from CT number. Conclusion : The presence of MR coils during PET/CT scanning can cause subtle artifacts and potentially important quantification errors. Alternative CT techniques that mitigate artifacts should be used to improve AC accuracy. When possible, removing segments of an MR coil prior to the PET/CT exam is recommended. Further, MR coils could be redesigned to reduce artifacts by rearranging placement of the most attenuating materials.

      • Liver PET/MRI 검사 시 MR 기반 호흡 움직임 보정 방법의 유용성 평가

        도용호,이홍재,김진의,노경운,Do, Yong Ho,Lee, Hong Jae,Kim, Jin Eui,Noh, Gyeong Woon 대한핵의학기술학회 2018 핵의학 기술 Vol.22 No.1

        PET/MRI 검사 시 호흡에 의한 움직임은 영상의 질 저하는 물론 종양의 크기, 표준섭취계수의 오차를 발생시키는 원인이 된다. 본 연구에서는 일체형 PET/MRI 장비에서 MR기반 호흡 움직임 보정 방법의 적용에 따른 종양의 표준섭취계수, 크기와 영상 품질 변화를 평가하고자 하였다. Biograph mMR 3.0T (Siemens, Germany)장비에서 2016년 3월부터 7월까지 $^{18}F-FDG$ liver PET/MRI 검사를 시행한 30명 ($62.5{\pm}10.2$세)의 데이터를 분석하였다. 7분의 PET listmode 데이터를 획득하는 동안 MR 기반 호흡 움직임 보정 방법인 MAG, MTG와 NG T1 weighted MR 영상을 획득하였다. Gated PET 영상의 재구성은 35% efficiency window가 적용된 MAG와 MTG로부터 획득된 감쇄보정영상을 이용하여 시행하였다. Non-gate, MAG, MTG 영상에서 측정된 종양의 표준섭취계수와 Z축 방향의 크기 그리고 반치폭을 분석하였다 평균 $SUV_{max}$와 $SUV_{peak}$는 NG 대비 MAG 13.15%(P<0.0001), 8.66%(P<0.0001), MTG 13.27%(P<0.0001), 8.80%(P<0.0001) 증가하였으며 Z-축에서 평균 종양의 크기와 반치폭은 MAG 14.47%(P<0.0001), 15.49%(P=0.0004), MTG 14.89%(P<0.0001), 15.79%(P=0.0003) 감소하였으며 통계적으로 유의한 차이를 보였다. MAG와 MTG 비교 평가에서 MTG의 $SUV_{max}$와 $SUV_{peak}$는 MAG 대비 0.07%(P=0.8802), 0.13%(P=0.7766) 증가하였으며 Z-축에서 평균 종양의 크기와 반치폭은 0.49%(P=0.2786), 0.36%(P=0.2488) 감소하였다. 약 7분과 2분의 추가 검사시간이 필요한 MAG와 MTG에서 표준섭취계수와 종양의 크기, 반치폭에서 통계적으로 유의한 차이가 없었다. 간 PET/MRI 검사 시 MR 기반 호흡 움직임 보정 방법을 적용하였을 때 NG 대비 MAG, MTG 모두에서 표준섭취계수와 종양의 크기 및 공간분해능이 개선되었으며 MAG와 MTG의 결과 값은 통계적으로 유의한 차이가 없었다. 호흡에 의한 움직임에 영향을 받는 다양한 상 복부 검사에 MBRMCT를 적용 시 추가적인 장비의 설치 없이 약 2분의 추가 검사시간이 필요한 MTG 방법 적용하여 NG 대비 보다 정확한 정보를 제공할 수 있을 것으로 사료된다. Purpose Respiratory motion during PET/MRI acquisition may result in image blurring and error in measurement for volume and quantification of lesion. The aim of this study was to evaluate changes of quantitative accuracy, tumor size and image quality by applying MR based respiratory motion correction technique (MBRMCT) using integrated PET/MR scanner. Materials and Methods Data of 30 patients (aged $62.5{\pm}10.2y$) underwent $^{18}F-FDG$ liver PET/MR (Biograph mMR 3.0T, Siemens) study were collected. PET listmode data for 7 minutes was simultaneously acquired with maximum average gate (MAG), minimum time gate (MTG) and non gate (NG) T1 weighted MR images. Gated PET reconstruction was performed using mu-maps generated from MAG and MTG by setting 35% of efficiency window. Maximum SUV ($SUV_{max}$), peak SUV ($SUV_{peak}$), tumor size and full width at half maximum (FWHM) in the z-axis direction of MAG, MTG and NG PET images were evaluated. Results Compared to NG, mean $SUV_{max}$ and $SUV_{peak}$ were increased in MAG 13.15%(p<0.0001), 8.66%(p<0.0001), MTG 13.27%(p<0.0001), 8.80%(p<0.0001) and mean tumor size and FWHM were decreased in MAG 14.47%(p<0.0001), 15.49%(p=0.0004), MTG 14.89%(p<0.0001), 15.79%(p=0.0003) respectively. Mean $SUV_{max}$ and $SUV_{peak}$ of MTG were increased by 0.07%(p=0.8802), 0.13%(p=0.7766). Mean tumor size and FWHM of MTG were decreased by 0.49%(p=0.2786), 0.36%(p=0.2488) compared to MAG. There was no statistically significant difference between MAG and MTG which increase total scan time for about 7 and 2 minutes. Conclusion SUV, accuracy of tumor size and spatial resolution were improved in both of MAG and MTG by applying MBRMCT without installing additional hardware in liver PET/MR study. More accurate information can be provided with the increase of 2 minutes scan time if applying MTG of MBRMCT to various abdominal PET/MR studies affected by respiratory motion.

      • SCISCIESCOPUS

        Segmentation-Based MR Attenuation Correction Including Bones Also Affects Quantitation in Brain Studies: An Initial Result of <sup>18</sup>F-FP-CIT PET/MR for Patients with Parkinsonism

        Choi, Hongyoon,Cheon, Gi Jeong,Kim, Han-Joon,Choi, Seung Hong,Lee, Jae Sung,Kim, Yong-il,Kang, Keon Wook,Chung, June-Key,Kim, E. Edmund,Lee, Dong Soo Society of Nuclear Medicine 2014 The Journal of nuclear medicine Vol.55 No.10

        <P>Attenuation correction (AC) with an ultrashort echo time (UTE) sequence has recently been used in combination with segmentation for cortical bone identification for brain PET/MR studies. The purpose of this study was to evaluate the quantification of <SUP>18</SUP>F-fluoropropyl-carbomethoxyiodophenylnortropane (<SUP>18</SUP>F-FP-CIT) binding in brain PET/MR, particularly focusing on effects of UTE-based AC including bone segmentation. <B>Methods:</B> Sixteen patients with initially suspected parkinsonism were prospectively enrolled. An emission scan was acquired 110 min after <SUP>18</SUP>F-FP-CIT injection on a dedicated PET/MR scanner, immediately followed by another emission scan using a PET/CT scanner 120 min after the injection. A UTE-based attenuation map was used to classify the voxels into 3 tissues: bone, soft tissue, and air. All PET images were spatially normalized, and a specific-to-nonspecific dopamine transporter (DAT) binding ratio (BR) was calculated using statistical probabilistic anatomic mapping. The level of agreement was assessed with intraclass correlation coefficients (ICCs). Voxelwise comparison between PET images acquired from PET/MR and PET/CT was performed. We compared non–attenuation-corrected images to analyze UTE-based AC effects on DAT quantification. <B>Results:</B> BR in the putamen obtained from PET/MR and PET/CT showed low interequipment variability, whereas BR in the caudate nucleus showed significant variability (ICC = 0.967 and 0.682 for putamen and caudate nucleus, respectively). BR in the caudate nucleus was significantly underestimated by PET/MR, compared with PET/CT (mean difference of BR = 0.66, <I>P</I> < 0.0001). Voxelwise analysis revealed that PET/MR showed significantly low BR in the periventricular regions, which was caused by a misclassification of the ventricle as air on the attenuation map. We also compared non-AC images, revealing low interequipment variability even in the caudate nucleus (ICC = 0.937 and 0.832 for putamen and caudate nucleus, respectively). <B>Conclusion:</B> Our data demonstrate spatial bias of the DAT BR on <SUP>18</SUP>F-FP-CIT PET/MR. Voxelwise analysis and comparison to non-AC images identified the misclassification of ventricle as air to be the cause of bias. To obtain reliable quantification for brain PET/MR studies including <SUP>18</SUP>F-FP-CIT PET, alternative and more reliable segmentation strategies are required.</P>

      • KCI등재

        Comparison of PET image quality using simultaneous PET/MR by attenuation correction with various MR pulse sequences

        박찬록,이영진 한국원자력학회 2019 Nuclear Engineering and Technology Vol.51 No.6

        Positron emission tomography (PET)/magnetic resonance (MR) scanning has the advantage of lessadditional exposure to radiation than does PET/computed tomography (CT). In particular, MR basedattenuation correction (MR AC) can greatly affect the image quality of PET and is frequently obtainedusing various MR sequences. Thus, the purpose of the current study was to quantitatively compare theimage quality between MR non-AC (MR NAC) and MR AC in PET images with three MR sequences. Percent image uniformity (PIU), percent contrast recovery (PCR), and percent background variability(PBV) were estimated to evaluate the quality of PET images with MR AC. Based on the results of PIU, 15.2%increase in the average quality was observed for PET images with MR AC than for PET images with MRNAC. In addition, 28.6% and 71.1% improvement in the average results of PCR and PBV respectively, wasobserved for PET images with MR AC compared with that with MR NAC. Moreover, no significant differencewas observed among the average values using three MR sequences. In conclusion, the currentstudy demonstrated that PET with MR AC improved the image quality and can be help diagnosis in all MRsequence cases.

      • SCOPUSKCI등재

        Comparison of the Performances of <sup>18</sup>F-FP-CIT Brain PET/MR and Simultaneous PET/CT: a Preliminary Study

        Kwon, SangDon,Chun, KyungAh,Kong, EunJung,Cho, IhnHo The Korea Society of Nuclear Medicine 2016 핵의학 분자영상 Vol.50 No.3

        Purpose $^{18}F$-FP-CIT [$^{18}F$-fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane] has been well established and used for the differential diagnosis of atypical parkinsonian disorders. Recently, combined positron emission tomography (PET)/magnetic resonance (MR) was proposed as a viable alternative to PET/computed tomography (CT). The aim of this study was to compare the performances of conventional $^{18}F$-FP-CIT brain PET/CT and simultaneous PET/MR by visual inspection and quantitative analysis. Methods Fifteen consecutive patients clinically suspected of having Parkinson's disease were recruited for the study.$^{18}F$-FP-CIT PET was performed during PET/CT and PET/MR. PET/CT image acquisition was started 90 min after intravenous injection of $^{18}F$-FP-CIT and then PET/MR images were acquired. Dopamine transporter (DAT) density in bilateral striatal subregions was assessed visually. Quantitative analyses were performed on bilateral striatal volumes of interest (VOIs) using average standardized uptake values (SUVmeans). Intraclass correlation coefficients (ICCs) and their 95 % confidence intervals (CIs) were assessed to compare PET/CT and PET/MR data. Bland-Altman plots were drawn to perform method-comparisons. Results All subjects showed a preferential decrease in DAT binding in the posterior putamen (PP), with relative sparing of the ventral putamen (VP). Bilateral striatal subregional binding ratio (BR) determined PET/CT and PET/MR demonstrated close interequipment correspondence ($BR_{right\;caudate}$ - ICC, 0.944; 95 % CI, 0.835-0.981, $BR_{left\;caudate}$ - ICC, 0.917; 95 % CI, 0.753-0.972, $BR_{right\;putamen}$ - ICC, 0.976; 95 % CI, 0.929-0.992 and $BR_{left\;putamen$ - ICC, 0.970; 95 % CI, 0.911-0.990, respectively), and Bland-Altman plots showed interequipment agreement between the two modalities. Conclusions It is known that MR provides more information about anatomical changes associated with brain diseases and to enable the anatomical allocations of subregions than CT, though this was not observed in the present study. Although the subregional BR of simultaneous PET/MR was comparable to that of PET/CT in Parkinson's disease, our isocontouring method could make bias. A future automated method using standard template study or manual segmentation of putamen/caudate based on MR or CT is needed.

      • SCIESCOPUSKCI등재

        Attenuation Effect of PET Images with and Without the Magnetic Resonance Breast Coil using Various MR Attenuation Correction Sequences

        Chan Rok Park,Youngjin Lee,Hyungjin Yang 한국자기학회 2018 Journal of Magnetics Vol.23 No.3

        The present study aims to confirm the attenuation correction (AC) in positron emission tomography (PET) images using various magnetic resonance (MR) sequences with and without the MR breast radiofrequency(RF) coil, and thus to evaluate the attenuation effect of the MR breast RF coil. To that purpose, we reconstructed non-attenuated PET data using the MR ACDixon-CAIPI, MR ACUTE, and MR ACDixon-GRAPPA sequences. The results indicated that the signal loss of the PET image with the MR breast RF coil was the lowest when the MR ACDixon-GRAPPA sequence was applied. In conclusion, the MR ACDixon-GRAPPA sequence maintained PET image quality when using the MR breast RF coil during PET/MR scanning.

      • KCI등재

        Effect of Gd-based MR contrast agents on CT attenuation of PET/CT for quantitative PET-MRI study

        Ko, In OK,Park, Ji Ae,Lee, Won Ho,Lim, Sang Moo,Kim, Kyeong Min 대한방사성의약품학회 2015 Journal of radiopharmaceuticals and molecular prob Vol.1 No.2

        We evaluate the influence of MR contrast agent on positron emission tomography (PET) image using phantom, animal and human studies. Phantom consisted of 15 solutions with the mixture of various concentrations of Gd-based MR contrast agent and fixed activity of [$^{18}F$]FDG. Animal study was performed using rabbit and two kinds of MR contrast agents. After injecting contrast agent, CT or MRI scanning was performed at 1, 2, 5, 10, and 20 minutes. PET image was obtained using clinical PET/CT scan, and attenuation correction was performed using the all CT images. The values of HU, PET activity and MRI intensity were obtained from ROIs in each phantom and organ regions. In clinical study, patients (n=20) with breast cancer underwent sequential acquisitions of early [$^{18}F$]FDG PET/CT, MRI and delayed PET/CT. In phantom study, as the concentration increased, the CT attenuation and PET activity also increased. However, there was no relationship between the PET activity and the concentration in the clinical dose range of contrast agent. In animal study, change of PET activity was not significant at all time point of CT scan both MR contrast agents. There was no significant change of HU between early and delayed CT, except for kidney. Early and delayed SUV in tumor and liver showed significant increase and decrease, respectively (P<0.05). Under the condition of most clinical study (< 0.2 mM), MR contrast agent did not influence on PET image quantitation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼