http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Lee, E.Y.,Lee, H.Y.,Kwon, S.Y.,Oh, Y.N.,Yang, W.I.,Shin, K.J. ELSEVIER SCIENCE B V AMSTERDAM 2017 FORENSIC SCIENCE INTERNATIONAL GENETICS Vol.26 No.-
<P>In forensic science and human genetics, Y-chromosomal short tandem repeats (Y-STRs) have been used as very useful markers. Recently, more Y-STR markers have been analyzed to enhance the resolution power in haplotype analysis, and 13 rapidly mutating (RM) Y-STRs have been suggested as revolutionary tools that can widen Y-chromosomal application from paternal lineage differentiation to male individualization. We have constructed two multiplex PCR sets for the amplification of 13 RM Y-STRs, which yield small-sized amplicons (<400 bp) and a more balanced PCR efficiency with minimum PCR cycling. In particular, with the developed multiplex PCR system, we could separate three copies of DYF403S1a into two copies of DYF403S1a and one of DYF403S1b1. This is because DYF403S1b1 possesses distinguishable sequences from DYF403S1a at both the front and rear flanking regions of the repeat motif; therefore, the locus could be separately amplified using sequence-specific primers. In addition, the other copy, defined as DYF403S1b by Ballantyne et al., was renamed DYF403S1b2 because of its similar flanking region sequence to DYF403S1b1. By redefining DYF403S1 with the developed multiplex system, all genotypes of four copies could be successfully typed and more diverse haplotypes were obtained. We analyzed haplotype distributions in 705 Korean males based on four different Y-STR subsets: Yfiler, PowerPlex Y23, Yfiler Plus, and RM Y-STRs. All haplotypes obtained from RM Y-STRs were the most diverse and showed strong discriminatory power in Korean population. (C) 2016 Elsevier Ireland Ltd. All rights reserved.</P>
Kwon, S.Y.,Lee, H.Y.,Lee, E.Y.,Yang, W.I.,Shin, K.J. Elsevier Science 2015 FORENSIC SCIENCE INTERNATIONAL GENETICS Vol.19 No.-
Y chromosome single nucleotide polymorphisms (Y-SNPs) are useful markers for reconstructing male lineages through hierarchically arranged allelic sets known as haplogroups, and are thereby widely used in the fields such as human evolution, anthropology and forensic genetics. The Y haplogroup tree was recently revised with newly suggested Y-SNP markers for designation of several subgroups of haplogroups C2, O2b and O3a, which are predominant in Koreans. Therefore, herein we analyzed these newly suggested Y-SNPs in 545 unrelated Korean males who belong to the haplogroups C2, O2b or O3a, and investigated the reconstructed topology of the Y haplogroup tree. We were able to confirm that markers L1373, Z1338/JST002613-27, Z1300, CTS2657, Z8440 and F845 define the C2 subhaplogroups, C2b, C2e, C2e1, C2e1a, C2e1b and C2e2, respectively, and that markers F3356, L682, F11, F238/F449 and F444 define the O subhaplogroups O2b1, O2b1b, O3a1c1, O3a1c2 and O3a2c1c, respectively. Among six C2 subhaplogroups (C2b, C2e, C2e1*, C2e1a, C2e1b and C2e2), the C2e haplogroup and its subhaplogroups were found to be predominant, and among the four O2b subhaplogroups (O2b*, O2b1*, O2b1a and O2b1b), O2b1b was most frequently observed. Among the O3a subhaplogroups, O3a2c1 was predominant and it was further divided into the subhaplogroups O3a2c1a and O3a2c1c with a newly suggested marker. However, the JST002613-27 marker, which had been known to define the haplogroup C2f, was found to be an ancestral marker of the C2e haplogroup, as is the Z1338 marker. Also, the M312 marker for the O2b1 haplogroup designation was replaced by F3356, because all of the O2b1 haplotypes showed a nucleotide change at F3356, but not at M312. In addition, the F238 marker was always observed to be phylogenetically equivalent to F449, while both of the markers were assigned to the O3a1c2 haplogroup. The confirmed phylogenetic tree of this study with the newly suggested Y-SNPs could be valuable for anthropological and forensic investigations of East Asians including Koreans.
Haplotype and mutation analysis for newly suggested Y-STRs in Korean father-son pairs
Oh, Y.N.,Lee, H.Y.,Lee, E.Y.,Kim, E.H.,Yang, W.I.,Shin, K.J. Elsevier Science 2015 FORENSIC SCIENCE INTERNATIONAL GENETICS Vol.15 No.-
In this study, 363 Korean father-son haplotype transfers in 351 families were analyzed using an in-house multiplex PCR system for 14 Y-STRs (DYS385a/b, DYF387S1, DYS391, DYS449, DYS460, DYS481, DYS518, DYS533, DYS549, DYS570, DYS576, DYS627 and DYS643), that included 11 loci newly added to the PowerPlex Y23 system or the Yfiler Plus system. The Y-STRs showed gene diversity values ranging from 0.2499 to 0.9612; the multicopy Y-STR loci DYS385 and DYF387S1 had high gene diversity of 0.9612 and 0.9457, respectively. In addition, DYF387S1, which has two copies, showed three alleles in seven individuals, and micro-variant alleles were observed in 14 individuals at four loci (DYS448, DYS518, DYS570 and DYS627). Among 351 haplotypes for the 11 newly added Y-STRs, 350 different haplotypes were observed, with an overall haplotype diversity of 0.9999 and discrimination capacity of 99.72%. In 363 haplotype transfers from 351 pedigrees, 29 single-step mutations were observed at 11 Y-STRs. Locus-specific mutation rate estimates varied from 0.0 to 1.93x10<SUP>-2</SUP>, with an average estimated mutation rate of 6.66x10<SUP>-3</SUP>. Two father-son pairs had mutations at two different loci in 11 Y-STRs. The number of pairs with mutations at multiple loci increased to five when the mutation event was investigated for haplotype transfer at 28 Y-STRs including 17 Yfiler loci and 11 Y-STRs examined in this study: four father-son pairs had mutations at two loci, and one pair had mutations at three loci. Overall, mutations were frequently observed at DYS449, DYS576 and DYS627 loci, which are known to be rapidly mutating Y-STRs. Mutation rate estimates at most loci were not significantly different from rates in other populations, but estimates for DYF387S1, DYS518 and DYS570 were considerably lower in the Korean population than in other populations.
Novel dentin phosphoprotein frameshift mutations in dentinogenesis imperfecta type II
Lee, K‐,E,Kang, H‐,Y,Lee, S‐,K,Yoo, S‐,H,Lee, J‐,C,Hwang, Y‐,H,Nam, KH,Kim, J‐,S,Park, J‐,C,Kim, J‐,W Blackwell Publishing Ltd 2011 Clinical genetics Vol.79 No.4
<P>Lee K‐E, Kang H‐Y, Lee S‐K, Yoo S‐H, Lee J‐C, Hwang Y‐H, Nam KH, Kim J‐S, Park J‐C, Kim J‐W. Novel dentin phosphoprotein frameshift mutations in dentinogenesis imperfecta type II.</P><P>The dentin sialophosphoprotein (<I>DSPP</I>) gene encodes the most abundant non‐collagenous protein in tooth dentin and DSPP protein is cleaved into several segments including the highly phosphorylated dentin phosphoprotein (DPP). Mutations in the <I>DSPP</I> gene have been solely related to non‐syndromic form of hereditary dentin defects. We recruited three Korean families with dentinogenesis imperfecta (DGI) type II and sequenced the exons and exon–intron boundaries of the <I>DSPP</I> gene based on the candidate gene approach. Direct sequencing of PCR products and allele‐specific cloning of the highly repetitive exon 5 revealed novel single base pair (bp) deletional mutations (c.2688delT and c.3560delG) introducing hydrophobic amino acids in the hydrophilic repeat domain of the DPP coding region. All affected members of the three families showed exceptionally rapid pulp chambers obliteration, even before tooth eruption. Individuals with the c.3560delG mutation showed only mild, yellowish tooth discoloration, in contrast to the affected individuals from two families with c.2688delT mutation. We believe that these results will help us to understand the molecular pathogenesis of DGI type II as well as the normal process of dentin biomineralization.</P>
Analysis of 22 Y chromosomal STR haplotypes and Y haplogroup distribution in Pathans of Pakistan
Lee, E.Y.,Shin, K.J.,Rakha, A.,Sim, J.E.,Park, M.J.,Kim, N.Y.,Yang, W.I.,Lee, H.Y. Elsevier Science 2014 FORENSIC SCIENCE INTERNATIONAL GENETICS Vol.11 No.-
We analyzed haplotypes for 22 Y chromosomal STRs (Y-STRs), including 17 Yfiler loci (DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DY438, DYS439, DYS448, DYS456, DYS458, DYS635 and Y-GATA-H4) and five additional STRs (DYS388, DYS446, DYS447, DYS449 and DYS464), and Y chromosomal haplogroup distribution in 270 unrelated individuals from the Pathans residing in the Federally Administered Tribal Areas and the North-West Frontier Province of Pakistan using in-house multiplex PCR systems. Each Y-STR showed diversities ranging from 0.2506 to 0.8538, and the discriminatory capacity (DC) was 73.7% with 199 observed haplotypes using 17 Yfiler loci. By the addition of 5 Y-STRs to the Yfiler system, the DC was increased to 85.2% while showing 230 observed haplotypes. Among the additional 5 Y-STRs, DYS446, DYS447 and DYS449 were major contributors to enhancing discrimination. In the analysis of molecular variance, the Pathans of this study showed significant differences from other Pathan populations as well as neighboring population sets. In Y-SNP analysis, a total of 12 Y chromosomal haplogroups were observed and the most frequent haplogroup was R1a1a with 49.3% frequency. To obtain insights on the origin of Pathans, the network analysis was performed for the haplogroups G and Q observed from the Pathans and the Jewish population groups including Ashkenazim and Sephardim, but little support for a Jewish origin could be found. In the present study, we report Y-STR population data in Pathans of Pakistan, and we emphasize the need for adding additional markers to the commonly used 17 Yfiler loci to achieve more improved discriminatory capacity in a population with low genetic diversity.
Kwon, S.Y.,Lee, H.Y.,Kim, E.H.,Lee, E.Y.,Shin, K.J. Elsevier Science 2016 FORENSIC SCIENCE INTERNATIONAL GENETICS Vol.25 No.-
Next-generation sequencing (NGS) can produce massively parallel sequencing (MPS) data for many targeted regions with a high depth of coverage, suggesting its successful application to the amplicons of forensic genetic markers. In the present study, we evaluated the practical utility of MPS in Y-chromosome short tandem repeat (Y-STR) analysis using a multiplex polymerase chain reaction (PCR) system. The multiplex PCR system simultaneously amplified 24 Y-chromosomal markers, including the PowerPlex<SUP>®</SUP> Y23 loci (DYS19, DYS385ab, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS481, DYS533, DYS549, DYS570, DYS576, DYS635, DYS643, and YGATAH4) and the M175 marker with the small-sized amplicons ranging from 85 to 253bp. The barcoded libraries for the amplicons of the 24 Y-chromosomal markers were produced using a simplified PCR-based library preparation method and successfully sequenced using MPS on a MiSeq<SUP>®</SUP> System with samples from 250 unrelated Korean males. The genotyping concordance between MPS and the capillary electrophoresis (CE) method, as well as the sequence structure of the 23 Y-STRs, were investigated. Three samples exhibited discordance between the MPS and CE results at DYS385, DYS439, and DYS576. There were 12 Y-STR loci that showed sequence variations in the alleles by a fragment size determination, and the most varied alleles occurred in DYS389II with a different sequence structure in the repeat region. The largest increase in gene diversity between the CE and MPS results was in DYS437 at +34.41%. Single nucleotide polymorphisms (SNPs), insertions, and deletions (indels) were observed in the flanking regions of DYS481, DYS576, and DYS385, respectively. Stutter and noise ratios of the 23 Y-STRs using the developed MPS system were also investigated. Based on these results, the MPS analysis system used in this study could facilitate the investigation into the sequences of the 23 Y-STRs in forensic genetics laboratories.
The effects of Sm and Y addition on the properties of YBCO thin film prepared by a DCA-MOD method
Kim, B.J.,Yu, J.H.,Lee, J.B.,Yoo, Y.S.,Kim, J.G.,Lee, H.G.,Hong, G.W. North-Holland 2009 Physica. C, Superconductivity Vol.469 No.15
Off-stoichiometric (Y<SUB>1</SUB>RE<SUB>x</SUB>)Ba<SUB>2</SUB>Cu<SUB>3</SUB>O<SUB>7-δ</SUB>; (x=0-0.4, RE=Y or Sm) films have been prepared on LaAlO<SUB>3</SUB> (100) single-crystal substrates by a metal-organic deposition using dichloroacetic acid as chelating solution. Coating solutions with excess Sm or Y were prepared by dissolving Y, Sm, Ba and Cu acetates in dichloroacetic acid and distilled water followed by refluxing, drying to obtain blue gel. The final precursor solution for dip coating was prepared by diluting blue gel in 2-methoxyethanol. Coated films were calcined at low temperature up to 500<SUP>o</SUP>C in flowing humid oxygen atmosphere. Conversion heat treatment was performed at 800<SUP>o</SUP>C for 2h in flowing Ar gas containing 1000ppm oxygen with a humidity of 9.45%. The viscosities of the precursor solution were increased as the content of added Sm or excess Y increased. The transport critical current density (J<SUB>c</SUB>) of (Y<SUB>1</SUB>RE<SUB>x</SUB>)Ba<SUB>2</SUB>Cu<SUB>3</SUB>O<SUB>7-δ</SUB>; film was enhanced with the addition of excess Sm and Y up to 20% and then decreased with further addition. Scanning electron microscope (SEM) observation showed that surface roughness was increased with the addition of excess Y.