http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Toshifumi Hibi,Satoshi Motoya,Tadakazu Hisamatsu,Fumihito Hirai,Kenji Watanabe,Katsuyoshi Matsuoka,Masayuki Saruta,Taku Kobayashi,Brian G Feagan,Chantal Tasset,Robin Besuyen,Chohee Yun,Gerald Crans,Ji 대한장연구학회 2023 Intestinal Research Vol.21 No.1
Background/Aims: The safety and efficacy of filgotinib, a once-daily oral Janus kinase 1 preferential inhibitor, were evaluated in Japanese patients with ulcerative colitis (UC) in the phase 2b/3 SELECTION trial. Methods: SELECTION (NCT02914522) was a randomized, placebo-controlled trial comprising 2 induction studies and a maintenance study. Adults with moderately to severely active UC were randomized in induction study A (biologic-naïve) or B (biologic-experienced) to receive filgotinib 200 mg, 100 mg, or placebo once daily for 11 weeks. Patients in clinical remission or Mayo Clinic score response at week 10 entered the 47-week maintenance study. Efficacy and safety outcomes were assessed in Japanese patients enrolled in Japan. Results: Overall, 37 and 72 Japanese patients were enrolled in Japan in induction studies A and B, respectively, and 54 entered the maintenance study. Numerically higher proportions of filgotinib 200 mg-treated than placebo-treated patients achieved clinical remission in induction study A (4/15 [26.7%] vs. 0/6 [0%]) and the maintenance study (5/20 [25.0%] vs. 0/9 [0%]), but not induction study B (1/29 [3.4%] vs. 1/14 [7.1%]). Both doses were well tolerated, and no new safety signals were noted. Herpes zoster was reported in 1 filgotinib 200 mg-treated patient in each of induction study A (2.3%, 1/44) and the maintenance study (5.0%, 1/20). Conclusions: These data, alongside those of the overall SELECTION population, suggest the potential of filgotinib 200 mg as a viable treatment option for Japanese patients with UC. Owing to small patient numbers, data should be interpreted cautiously.
탄성파 및 비저항 동시측정에 의한 수포화 암석시료에 주입된 CO2모니터링 및 탐지
김종욱 ( Jong Wook Kim ),( Toshifumi Matsuoka ),설자구 ( Zi Qiu Xue ) 한국지구물리·물리탐사학회 2011 지구물리와 물리탐사 Vol.14 No.1
As part of basic studies of monitoring carbon dioxide (CO2) storage using electrical and seismic surveys, laboratory experiments have been conducted to measure resistivity and P-wave velocity changes due to the injection of CO2 into water-saturated sandstone. The rock sample used is a cylinder of Berea sandstone. CO2 was injected under supercritical conditions (10 MPa, 40℃). The experimental results show that resistivity increases monotonously throughout the injection period, while P-wave velocity and amplitude decrease drastically due to the supercritical CO2 injection. A reconstructed P-wave velocity tomogram clearly images CO2 migration in the sandstone sample. Both resistivity and seismic velocity are useful for monitoring CO2 behaviour. P-wave velocity, however, is less sensitive than resistivity when the CO2 saturation is greater than ~20%. The result indicates that the saturation estimation from resistivity can effectively complement the difficulty of CO2 saturation estimations from seismic velocity variations. By combining resistivity and seismic velocity we were able to estimate CO2 saturation distribution and the injected CO2 behaviour in our sample.
그래픽 프로세서를 이용한 탄성파 수치모사의 계산속도 향상
( Norimitsu Nakata ),( Takeshi Tsuji ),( Toshifumi Matsuoka ) 한국지구물리·물리탐사학회 2011 지구물리와 물리탐사 Vol.14 No.1
Numerical simulation in exploration geophysics provides important insights into subsurface wave propagation phenomena. Although elastic wave simulations take longer to compute than acoustic simulations, an elastic simulator can construct more realistic wavefields including shear components. Therefore, it is suitable for exploration of the responses of elastic bodies. To overcome the long duration of the calculations, we use a Graphic Processing Unit (GPU) to accelerate the elastic wave simulation. Because a GPU has many processors and a wide memory bandwidth, we can use it in a parallelised computing architecture. The GPU board used in this study is an NVIDIA Tesla C1060, which has 240 processors and a 102GB/s memory bandwidth. Despite the availability of a parallel computing architecture (CUDA), developed by NVIDIA, we must optimise the usage of the different types of memory on the GPU device, and the sequence of calculations, to obtain a significant speedup of the computation. In this study, we simulate two- (2D) and threedimensional (3D) elastic wave propagation using the Finite-Difference Time-Domain (FDTD) method on GPUs. In the wave propagation simulation, we adopt the staggered-grid method, which is one of the conventional FD schemes, since this method can achieve sufficient accuracy for use in numerical modelling in geophysics. Our simulator optimises the usage of memory on the GPU device to reduce data access times, and uses faster memory as much as possible. This is a key factor in GPU computing. By using one GPU device and optimising its memory usage, we improved the computation time by more than 14 times in the 2D simulation, and over six times in the 3D simulation, compared with one CPU. Furthermore, by using three GPUs, we succeeded in accelerating the 3D simulation 10 times.
Acceleration of computation speed for elastic wave simulation using a Graphic Processing Unit
Nakata, Norimitsu,Tsuji, Takeshi,Matsuoka, Toshifumi Korean Society of Earth and Exploration Geophysici 2011 지구물리와 물리탐사 Vol.14 No.1
Numerical simulation in exploration geophysics provides important insights into subsurface wave propagation phenomena. Although elastic wave simulations take longer to compute than acoustic simulations, an elastic simulator can construct more realistic wavefields including shear components. Therefore, it is suitable for exploration of the responses of elastic bodies. To overcome the long duration of the calculations, we use a Graphic Processing Unit (GPU) to accelerate the elastic wave simulation. Because a GPU has many processors and a wide memory bandwidth, we can use it in a parallelised computing architecture. The GPU board used in this study is an NVIDIA Tesla C1060, which has 240 processors and a 102 GB/s memory bandwidth. Despite the availability of a parallel computing architecture (CUDA), developed by NVIDIA, we must optimise the usage of the different types of memory on the GPU device, and the sequence of calculations, to obtain a significant speedup of the computation. In this study, we simulate two- (2D) and threedimensional (3D) elastic wave propagation using the Finite-Difference Time-Domain (FDTD) method on GPUs. In the wave propagation simulation, we adopt the staggered-grid method, which is one of the conventional FD schemes, since this method can achieve sufficient accuracy for use in numerical modelling in geophysics. Our simulator optimises the usage of memory on the GPU device to reduce data access times, and uses faster memory as much as possible. This is a key factor in GPU computing. By using one GPU device and optimising its memory usage, we improved the computation time by more than 14 times in the 2D simulation, and over six times in the 3D simulation, compared with one CPU. Furthermore, by using three GPUs, we succeeded in accelerating the 3D simulation 10 times.
Fracture imaging using Image Point transform and midpoint imaging of RVSP data
이창현,박권규,Toshiyuki Matsuoka,Toshifumi Matsuoka 한국지질과학협의회 2010 Geosciences Journal Vol.14 No.4
An Image Point (IP) transform integrates along a hyperbolic path and converts data to a point in the IP domain so that the reflection events are accumulated to the image point for given sources in the IP domain. In addition, the image point by definition is uniquely determined and the midpoints between sources and the image points always lie on the reflector surface. Exploiting these two facts, the image point transform technique for Vertical Seismic Profile (VSP) to reverse VSP (RVSP) data is expanded to suggest a new method called the midpoint imaging method for imaging reflectors such as fractures. Applying the transform with synthetic data for Two-dimensional (2-D) models with single reflector and two reflectors, we confirm and demonstrate that the reflection events are clearly identifiable in the IP domain. The midpoint imaging method can successfully image the reflector surfaces and the dip information even with only two shot records in a simple case.
Random heterogeneous model with bimodal velocity distribution for Methane Hydrate exploration
Kamei Rie,Hato Masami,Matsuoka Toshifumi Korean Society of Earth and Exploration Geophysici 2005 지구물리와 물리탐사 Vol.8 No.1
We have developed a random heterogeneous velocity model with bimodal distribution in methane hydrate-bearing Bones. The P-wave well-log data have a von Karman type autocorrelation function and non-Gaussian distribution. The velocity histogram has two peaks separated by several hundred metres per second. A random heterogeneous medium with bimodal distribution is generated by mapping of a medium with a Gaussian probability distribution, yielded by the normal spectral-based generation method. By using an ellipsoidal autocorrelation function, the random medium also incorporates anisotropy of autocorrelation lengths. A simulated P-wave velocity log reproduces well the features of the field data. This model is applied to two simulations of elastic wane propagation. Synthetic reflection sections with source signals in two different frequency bands imply that the velocity fluctuation of the random model with bimodal distribution causes the frequency dependence of the Bottom Simulating Reflector (BSR) by affecting wave field scattering. A synthetic cross-well section suggests that the strong attenuation observed in field data might be caused by the extrinsic attenuation in scattering. We conclude that random heterogeneity with bimodal distribution is a key issue in modelling hydrate-bearing Bones, and that it can explain the frequency dependence and scattering observed in seismic sections in such areas.