http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Property Enhancement of SiR-EPDM Blend Using Electron Beam Irradiation
Deepalaxmi. R,Rajini. V 대한전기학회 2014 Journal of Electrical Engineering & Technology Vol.9 No.3
Polymers are the most commonly used di-electrics because of their reliability, availability, ease of fabrication and cost. The commercial and industrial demand for advanced polymeric materials which are capable of being used in harsh environment is need of the hour. The study of the effect of electron beam irradiation on polymeric materials is an area of rapidly increasing interest. This paper discusses the resultant beneficial effects of electron beam irradiation on the SiR-EPDM blend having 50:50 composition. The changes in mechanical and electrical properties of SiR-EPDM blend which are exposed to three different doses of electron beam radiation namely 5 Mrad, 15 Mrad and 25 Mrad are presented. The irradiated blends are analyzed for their electro-mechanical and physico chemical properties. The electrical changes induced by irradiation are investigated by arc resistance, surface resistivity and volume resistivity measurements as per ASTM standards. The mechanical changes are observed by the measurement of tensile strength and elongation at break. Physico chemical investigation has been done using the FTIR, in order to investigate the irradiation induced chemical changes.
V. Vasan Prabhu,V. Rajini,M. Balaji,V. Prabhu 대한전기학회 2015 Journal of Electrical Engineering & Technology Vol.10 No.2
This paper’s focus is in reducing the torque ripple and increasing the average torque by optimizing switching angles of 8/6 switched reluctance motor while implementing a robust speed controller in the outer loop. The mathematical model of the machine is developed and it is simulated using MATLAB/Simulink. An objective function and constraints are formulated and Optimum turn-on and turn-off angles are determined using Particle swarm optimization and Genetic Algorithm techniques. The novelty of this paper lies in implementing sliding mode speed controller with optimized angles. The results from both the optimization techniques are then compared with initial angles with one of them clearly being the better option. Speed response is compared with PID controller.
Prabhu, V. Vasan,Rajini, V.,Balaji, M.,Prabhu, V. The Korean Institute of Electrical Engineers 2015 Journal of Electrical Engineering & Technology Vol.10 No.2
This paper's focus is in reducing the torque ripple and increasing the average torque by optimizing switching angles of 8/6 switched reluctance motor while implementing a robust speed controller in the outer loop. The mathematical model of the machine is developed and it is simulated using MATLAB/Simulink. An objective function and constraints are formulated and Optimum turn-on and turn-off angles are determined using Particle swarm optimization and Genetic Algorithm techniques. The novelty of this paper lies in implementing sliding mode speed controller with optimized angles. The results from both the optimization techniques are then compared with initial angles with one of them clearly being the better option. Speed response is compared with PID controller.
Venkatathri, N.,Nookaraju, M.,Rajini, A.,Reddy, I.A.K. Korean Chemical Society 2013 Bulletin of the Korean Chemical Society Vol.34 No.1
Novel titanium containing solid core mesoporous shell silica has been synthesized by using octadecyltrichloro silane and triethylamine. The synthesized material was characterized by various physicochemical techniques. The mesoporous character of the material has been revealed from PXRD studies. The presence of octadecyltrichloro silane and triethylamine in the sample has been confirmed from EDAX studies. TG/DTA analysis reveals the thermal characteristics of the synthesized material. The presence of titanium in the frame work and its coordination state has been studies by UV-vis DR studies and XPS analysis. Chemical environment of Si in the framework of the material has been studied by $^{29}SiMASNMR$ studies. The surface area of the material is found to be around $550\;m^2g^{-1}$ and pore radius is of nano range from BET analysis. The spherical morphology and particle size of the core as well as shell has been found to be 300 nm and 50 nm respectively from TEM analysis. The catalytic application of this material towards the synthesis of caprolactam from cyclohexanone in presence of hydrogen peroxide through ammoxidation reaction has been investigated. The optimum conditions for the reaction have been established. The plausible mechanism for the formation of core silica and conversion of cyclohexanone has been proposed.
Roseline, Johnson Anitha,Vijayenthiran, Subramanian,V., Rajini,Mahadevan, Senthil Kumaran The Korean Institute of Power Electronics 2015 JOURNAL OF POWER ELECTRONICS Vol.15 No.3
The hybrid cascaded multilevel inverter (HCMLI) is a popular converter topology that is being increasingly used in high power medium voltage drives. The intricacy of the control technique for a HCMLI increases with the number of levels and due to fluctuating dc voltages. This paper presents a novel offline quadrant search based space vector modulation technique to synthesize a sinusoidal output from a dispersed pattern of voltage vectors due to different voltages in the auxiliary unit. Such an investigation has never been reported in the literature and it is being attempted for the first time. The method suggested distributes the voltage vectors for a reduced total harmonic distortion at minimal computation. In addition, the proposed algorithm determines the maximum modulation index in the linear modulation range in order to synthesize a sinusoidal output for both normal and abnormal vector patterns. It is better suited for a wide range of practical applications. It is particularly well suited for renewable source fed inverters which utilize large capacitor banks to maintain the dc link, which are prone to such slow fluctuations. The proposed quadrant search space vector modulation technique is simulated using MATLAB/SIMULINK and implemented using a Nexys-2 Spartan-3E FPGA for a developed prototype.
Johnson Anitha Roseline,Subramanian Vijayenthiran,Rajini V,Senthil Kumaran Mahadevan 전력전자학회 2015 JOURNAL OF POWER ELECTRONICS Vol.15 No.3
The hybrid cascaded multilevel inverter (HCMLI) is a popular converter topology that is being increasingly used in high power medium voltage drives. The intricacy of the control technique for a HCMLI increases with the number of levels and due to fluctuating dc voltages. This paper presents a novel offline quadrant search based space vector modulation technique to synthesize a sinusoidal output from a dispersed pattern of voltage vectors due to different voltages in the auxiliary unit. Such an investigation has never been reported in the literature and it is being attempted for the first time. The method suggested distributes the voltage vectors for a reduced total harmonic distortion at minimal computation. In addition, the proposed algorithm determines the maximum modulation index in the linear modulation range in order to synthesize a sinusoidal output for both normal and abnormal vector patterns. It is better suited for a wide range of practical applications. It is particularly well suited for renewable source fed inverters which utilize large capacitor banks to maintain the dc link, which are prone to such slow fluctuations. The proposed quadrant search space vector modulation technique is simulated using MATLAB/SIMULINK and implemented using a Nexys-2 Spartan-3E FPGA for a developed prototype.
N. Venkatathri,M. Nookaraju,A. Rajini,I. A. K. Reddy 대한화학회 2013 Bulletin of the Korean Chemical Society Vol.34 No.1
Novel titanium containing solid core mesoporous shell silica has been synthesized by using octadecyltrichloro silane and triethylamine. The synthesized material was characterized by various physicochemical techniques. The mesoporous character of the material has been revealed from PXRD studies. The presence of octadecyltrichloro silane and triethylamine in the sample has been confirmed from EDAX studies. TG/DTA analysis reveals the thermal characteristics of the synthesized material. The presence of titanium in the frame work and its coordination state has been studies by UV-vis DR studies and XPS analysis. Chemical environment of Si in the framework of the material has been studied by 29SiMASNMR studies. The surface area of the material is found to be around 550 m2g−1 and pore radius is of nano range from BET analysis. The spherical morphology and particle size of the core as well as shell has been found to be 300 nm and 50 nm respectively from TEM analysis. The catalytic application of this material towards the synthesis of caprolactam from cyclohexanone in presence of hydrogen peroxide through ammoxidation reaction has been investigated. The optimum conditions for the reaction have been established. The plausible mechanism for the formation of core silica and conversion of cyclohexanone has been proposed.