RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Effects of Inclusion Levels of Wheat Bran and Body Weight on Ileal and Fecal Digestibility in Growing Pigs

        Huang, Q.,Su, Y.B.,Li, D.F.,Liu, L.,Huang, C.F.,Zhu, Z.P.,Lai, C.H. Asian Australasian Association of Animal Productio 2015 Animal Bioscience Vol.28 No.6

        The objective of this study was to determine the effects of graded inclusions of wheat bran (0%, 9.65%, 48.25% wheat bran) and two growth stages (from 32.5 to 47.2 kg and 59.4 to 78.7 kg, respectively) on the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD) and hindgut fermentation of nutrients and energy in growing pigs. Six light pigs (initial body weight [BW] $32.5{\pm}2.1kg$) and six heavy pigs (initial BW $59.4{\pm}3.2kg$) were surgically prepared with a T-cannula in the distal ileum. A difference method was used to calculate the nutrient and energy digestibility of wheat bran by means of comparison with a basal diet consisting of corn-soybean meal (0% wheat bran). Two additional diets were formulated by replacing 9.65% and 48.25% wheat bran by the basal diet, respectively. Each group of pigs was allotted to a $6{\times}3$ Youden square design, and pigs were fed to three experimental diets during three 11-d periods. Hindgut fermentation values were calculated as the differences between ATTD and AID values. For the wheat bran diets, the AID and ATTD of dry matter (DM), ash, organic matter (OM), carbohydrates (CHO), gross energy (GE), and digestible energy (DE) decreased with increasing inclusion levels of wheat bran (p<0.05). While only AID of CHO and ATTD of DM, ash, OM, CHO, GE, and DE content differed (p<0.05) when considering the BW effect. For the wheat bran ingredient, there was a wider variation effect (p<0.01) on the nutrient and energy digestibility of wheat bran in 9.65% inclusion level due to the coefficient of variation (CV) of the nutrient and energy digestibility being higher at 9.65% compared to 48.25% inclusion level of wheat bran. Digestible energy content of wheat bran at 48.25% inclusion level (4.8 and 6.7 MJ/kg of DM, respectively) fermented by hindgut was significantly higher (p<0.05) than that in 9.65% wheat bran inclusion level (2.56 and 2.12 MJ/kg of DM, respectively), which was also affected (p<0.05) by two growth stages. This increase in hindgut fermentation caused the difference in ileal DE (p<0.05) to disappear at total tract level. All in all, increasing wheat bran levels in diets negatively influences the digestibility of some nutrients in pigs, while it positively affects the DE fermentation in the hindgut.

      • SCISCIESCOPUS
      • SCOPUSKCI등재

        Insights into the removal of gaseous oxytetracycline by combined ozone and membrane biofilm reactor

        Z.S. Wei,X.L. Chen,Z.S. Huang,H.Y. Jiao,X.L. Xiao 대한환경공학회 2022 Environmental Engineering Research Vol.27 No.6

        Gaseous emerging organic compounds (GEOCs) may harm human health and ecological environment. High temperature composting of livestock manure may produce oxytetracycline (OTC) waste gas. Here, we investigated treatment OTC in waste gas by combined ozone and membrane biofilm reactor (MBfR) with desulphurizing bacteria. The performance, the microbial community, gene function and the mechanism for OTC removal in the ozone-MBfR were evaluated. The ozone-MBfR system could achieve more degradation of OTC completely than MBfR. Desulfovibrio, Lentimicrobium, Aminivibrio, Thioalkalispira, Erysipelothrix, Mangroviflexus, Azoarcus, Thauera, Geobacter, Paracoccus, and Dethiosulfatibacter were the dominant genera. Pseudomonas, Escherichia, Bacteroides, Salmonella, Paracoccus, Stappia were contribution to OTC degradation. With the addition of ozone, the community diversity increased; some genera, such as Tenericutes- uncultured, and Desulfovibrio, increased in abundance, whereas others, such as Thauera, and Petrimonas, decreased. Ozone destroyed the enol structure in OTC molecular structure and produces biodegradable products, ozone oxidation was combined with biodegradation, to achieve thoroughly degrade OTC in waste gas. The novel hybrid ozone-MBfR is a cost-effective and robust alternative to GEOCs treatment.

      • KCI등재

        Effects of Brazing Temperature on Microstructure and High-Temperature Strength of Joints Using a Novel Fourth-Generation Nickel-Based Single Crystal Superalloy

        Z. P. Zhang,J. D. Liu,K. Q. Qiu,Y. Y. Huang,J. G. Li,X. G. Wang,J. L. Liu,M. Wang,M. K. Zou,Y. Z. Zhou 대한금속·재료학회 2023 METALS AND MATERIALS International Vol.29 No.2

        A novel fourth-generation nickel-based single crystal superalloy was bonded by vacuum brazing at 1230 °C, 1260 °C and1290 °C for 60 min using a new type of Co-based filler alloy. The effects of the brazing temperature on the microstructureand mechanical properties of the brazed joint were investigated. The brazed joint was mainly composed of the non-isothermalsolidification zone (M3B2 type-boride, CrB boride, Ni3Bboride and MC carbide), isothermal solidification zone (γ and γ'Phase) and base metal. With the increase of brazing temperature, the volume fraction of borides and γ' phase in the centerof the joint decreased and increased, respectively. The high-temperature tensile test results show that the tensile strength ofthe joints was improved with increasing brazing temperature, and the maximum tensile strength of the joint was 766 MPaafter brazing at 1290 °C for 60 min. Fracture observation shows that the fracture modes of the joints were the same, whichbelongs to the typical quasi cleavage fracture. The element distribution in the joint was homogenized to a certain extent at1290 °C. The segregation of Si and Ru was found, but they were still dissolved in the γ solid solution. The experimentalresults help to better understand the microstructure characteristics of the novel fourth-generation nickel-based single crystalsuperalloy and provide guidance for further optimizing the process parameters of the brazed joint.

      • KCI등재

        Structural damage detection based on residual force vector and imperialist competitive algorithm

        Z.H. Ding,R.Z. Yao,J.L. Huang,M. Huang,Z. R. Lu 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.62 No.6

        This paper develops a two-stage method for structural damage identification by using modal data. First, the Residual Force Vector (RFV) is introduced to detect any potentially damaged elements of structures. Second, data of the frequency domain are used to build up the objective function, and then the Imperialist Competitive Algorithm (ICA) is utilized to estimate damaged extents. ICA is a heuristic algorithm with simple structure, which is easy to be implemented and it is effective to deal with high-dimension nonlinear optimization problem. The advantages of this present method are: (1) Calculation complexity can be decreased greatly after eliminating many intact elements in the first step. (2) Robustness, ICA ensures the robustness of the proposed method. Various damaged cases and different structures are investigated in numerical simulations. From these results, anyone can point out that the present algorithm is effective and robust for structural damage identification and is also better than many other heuristic algorithms.

      • KCI등재

        Elemental mercury oxidation from flue gas by microwave catalytic oxidation over Mn/g-Al2O3

        Z.S. Wei,Y.W. Luo,B.R. Li,Z.Y. Chen,Q.H. Ye,Q.R. Huang,J.C. He 한국공업화학회 2015 Journal of Industrial and Engineering Chemistry Vol.24 No.-

        The integrated microwave with Mn/g-Al2O3 and ozone was employed to oxidize elemental mercury (Hg0) in simulated flue gas. Hg0 oxidation efficiency in the integrated system attained 92.2%. Mn/g-Al2O3 catalyst was characterized by XRD, XPS, FT-IR, SEM. XPS spectra indicate the formation of a stable mercuric oxide species (HgO) from mercury oxidation. Ozone molecules in air could enhance free radical formation. Hg0 was oxidized to HgO in the presence of ozone and free radical. The coupling role between ozone and radical on mercury oxidation was formed. Microwave catalytic oxidation of elemental mercury reaction with the Mn/g-Al2O3 catalyst follows Langmuir–Hinshelwood kinetics.

      • SCIESCOPUSKCI등재

        Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

        Li, Z.R.,Li, Z.C.,Dong, Z.F.,Huang, T.,Lu, Y.G.,Rong, J.L.,Wu, H. Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.9

        Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.

      • SCIESCOPUSKCI등재

        Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

        Li, Z.R.,Li, Z.C.,Dong, Z.F.,Huang, T.,Lu, Y.G.,Rong, J.L.,Wu, H. Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.9

        Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼