RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Quantitative trait locus mapping and genomic selection of tobacco (Nicotiana tabacum L.) based on high-density genetic map

        Tong Zhijun,Xiu Zhihui,Ming Yao,Fang Dunhuang,Chen Xuejun,Hu Yafei,Zhou Juhong,He Weiming,Jiao Fangchan,Zhang Chi,Zhao Shancen,Jin Han,Jian Jianbo,Xiao Bingguang 한국식물생명공학회 2021 Plant biotechnology reports Vol.15 No.6

        Tobacco ( Nicotiana tabacum L.) is an economic crop and a model organism for studies of plant biology and genetics. As an allotetraploid plant generated from interspecific hybridization, tobacco has a massive genome (4.5 Gb). Recently, a genetic map with 45,081 single nucleotide polymorphism (SNP) markers was constructed using whole-genome sequencing data for a tobacco population including 274 individuals. This provides a basis for quantitative trait locus (QTL) mapping and genomic selection, which have been widely applied to other crops but have not been feasible in tobacco. Based on this high-density genetic map, we identified QTLs associated with important agronomic traits, chemical compounds in dry leaves, and hazardous substances in processed cigarettes. The LOD values for major QTLs were highest for agronomic traits, followed by chemical compounds and hazardous substances. In addition to the identification of molecular markers, we evaluated genomic selection models and found that BayesB had the highest prediction accuracy for the recombinant inbred line population. Our results offer new insights into the genetic mechanism underlying important traits, such as agronomic traits and quality-related chemical compounds in tobacco, and will be able to support the application of molecular breeding to tobacco.

      • KCI등재

        Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer

        Wei Zhao,Ziwei Ren,Yan Luo,Jianguo Cheng,Jie Wang,Yin Wang,Zexiao Yang,Xueping Yao,Zhijun Zhong,Wei Yang,Xi Wu 한국유전학회 2021 Genes & Genomics Vol.43 No.1

        Background The forest musk deer (FMD, Moschus berezovskii) is an threatened species in China. Bacterial pneumonia was found to seriously restrict the development of FMD captive breeding. Historical evidence has demonstrated the relationship between immune system and intestinal Lactobacillus in FMD. Objective We sought to elucidate the diferences in the gut microbiota of healthy and bacterial pneumonia FMD. Methods The bacterial pneumonia FMD was demonstrated by bacterial and pathological diagnosis, and the gut microbiome of healthy and bacterial pneumonia FMD was sequenced and analysed. Results There are three pathogens (Pseudomonas aeruginosa, Streptococcus equinus and Trueperella pyogenes) isolated from the bacterial pneumonia FMD individuals. Compared with the healthy group, the abundance of Firmicutes and Proteobacteria in the pneumonia group was changed, and a high level of Proteobacteria was found in the pneumonia group. In addition, a higher abundance of Acinetobacter (p=0.01) was observed in the population of the pneumonia group compared with the healthy group. Several potentially harmful bacteria and disease-related KEGG subsystems were only found in the gut of the bacterial pneumonia group. Analysis of KEGG revealed that many genes related to type IV secretion system, type IV pilus, lipopolysaccharide export system, HTH-type transcriptional regulator/antitoxin MqsA, and ArsR family transcriptional regulator were signifcantly enriched in the metagenome of the bacterial pneumonia FMD. Conclusion Our results demonstrated that the gut microbiome was signifcantly altered in the bacterial pneumonia group. Overall, our research improves the understanding of the potential role of the gut microbiota in the FMD bacterial pneumonia.

      • KCI등재

        Inter-hemispheric Functional Connections Are More Vulnerable to Attack Than Structural Connection in Patients With Irritable Bowel Syndrome

        ( Guangyao Liu ),( Shan Li ),( Nan Chen ),( Ziyang Zhao ),( Man Guo ),( Hong Liu ),( Jie Feng ),( Dekui Zhang ),( Zhijun Yao ),( Bin Hu ) 대한소화기기능성질환·운동학회(구 대한소화관운동학회) 2021 Journal of Neurogastroenterology and Motility (JNM Vol.27 No.3

        Background/Aims Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disease characterized by recurrent abdominal pain and bowel dysfunction. However, the majority of previous neuroimaging studies focus on brain structure and connections but seldom on the inter-hemispheric connectivity or structural asymmetry. This study uses multi-modal imaging to investigate the abnormal changes across the 2 cerebral hemispheres in patients with IBS. Methods Structural MRI, resting-state functional MRI, and diffusion tensor imaging were acquired from 34 patients with IBS and 33 healthy controls. The voxel-mirrored homotopic connectivity, fractional anisotropy, fiber length, fiber number, and asymmetry index were calculated and assessed for group differences. In addition, we assessed their relevance for the severity of IBS. Results Compared with healthy controls, the inter-hemispheric functional connectivity of patients with IBS showed higher levels in bilateral superior occipital gyrus, middle occipital gyrus, precuneus, posterior cingulate gyrus, and angular gyrus, but lower in supplementary motor area. The statistical results showed no significant difference in inter-hemispheric anatomical connections and structural asymmetry, however negative correlations between inter-hemispheric connectivity and the severity of IBS were found in some regions with significant difference. Conclusions The functional connections between cerebral hemispheres were more susceptible to IBS than anatomical connections, and brain structure is relatively stable. Besides, the brain areas affected by IBS were concentrated in default mode network and sensorimotor network. (J Neurogastroenterol Motil 2021;27:426-435)

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼