RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • Distance Estimation Methods in Vehicular Application: An Experimental Study

        Yiwen Cao,Xinglong Lu,Zhonghua Zhao,Xiaojun Ji,Yilin Yan 제어로봇시스템학회 2018 제어로봇시스템학회 국제학술대회 논문집 Vol.2018 No.10

        Passive Entry and Passive Start (PEPS) system allows drivers to enter the vehicle and start the engine without activating key fob. With growing demand for location-based service and rapid development of Bluetooth Low Energy (BLE), BLE PEPS with localization service becomes a promising choice for next generation of PEPS. This paper studies the critical problem of localizing the vehicle for user based on BLE received signal strength (RSS) provided by preinstalled BLE Access Points (APs) inside vehicle. Multiple APs are employed to reduce the error caused by RSS fluctuation on distance estimation. Fusion algorithms including Extended Kalman Filter, Monte Carlo Localization and Iterative Trilateration are compared based on experiments in vehicle. Experimental results show that distance estimation based on Extended Kalman Filter gets high accuracy in both long distance and short distance scenario.

      • KCI등재

        Proliferated Leydig Cells for Engineered Testis-like Tissue Regeneration with Testosterone-Secreting Ability

        Hongda Bi,Xiaoyun Wang,Wei Liu,Yilin Cao,Guangdong Zhou,Xin Xing 한국조직공학과 재생의학회 2014 조직공학과 재생의학 Vol.11 No.5

        Tissue engineering approach provides a hopeful strategy for reconstructing testis testosterone-secreting functions. However, limited source and low proliferative activity in vitro of Leydig cells (LCs, the main testosteroneproducing cells) makes testis-like tissue regeneration difficult to be achieved. This study explored the feasibility of in vitro expanding LCs and their potential application in testis-like tissue regeneration. LC lineage cells were isolated from Sprague-Dawley (SD) rats by differential adhesion method and cell composition was identified by expressions of 3β-HSD, LHR, LIFR, and c-kit. A modified expansion medium (EM) system was used to test the feasibility of in vitro expanding LC lineage. The results showed that the attached cells reached a high purification of LC lineage (>90%, indicated by positive expression of 3β-HSD) and that EM significantly enhanced proliferation of LC lineage compared to regular medium, which was testified to be related to the presence of stem LCs that was implied by positive expressions of LIFR and c-kit as well as the transition of 3β-HSD expression from negative to positive in partial cells. Importantly, the proliferated LCs showed relatively sustained testosterone-secreting ability in vitro and these cells combined with biodegradable scaffolds successfully regenerated testis-like tissue with sustained testosteronesecreting function in vivo, which was supported by the enhanced serum testosterone level in castrated rats. All these results indicated that the differential adhesion method could efficiently isolate and purify LC lineage and that EM system could efficiently promote proliferation and functional maintenance of LC lineage, providing a good cell source for testes-like tissue regeneration. Tissue engineering approach provides a hopeful strategy for reconstructing testis testosterone-secreting functions. However, limited source and low proliferative activity in vitro of Leydig cells (LCs, the main testosteroneproducing cells) makes testis-like tissue regeneration difficult to be achieved. This study explored the feasibility of in vitro expanding LCs and their potential application in testis-like tissue regeneration. LC lineage cells were isolated from Sprague-Dawley (SD) rats by differential adhesion method and cell composition was identified by expressions of 3β-HSD, LHR, LIFR, and c-kit. A modified expansion medium (EM) system was used to test the feasibility of in vitro expanding LC lineage. The results showed that the attached cells reached a high purification of LC lineage (>90%, indicated by positive expression of 3β-HSD) and that EM significantly enhanced proliferation of LC lineage compared to regular medium, which was testified to be related to the presence of stem LCs that was implied by positive expressions of LIFR and c-kit as well as the transition of 3β-HSD expression from negative to positive in partial cells. Importantly, the proliferated LCs showed relatively sustained testosterone-secreting ability in vitro and thesecells combined with biodegradable scaffolds successfully regenerated testis-like tissue with sustained testosteronesecreting function in vivo, which was supported by the enhanced serum testosterone level in castrated rats. All these results indicated that the differential adhesion method could efficiently isolate and purify LC lineage and that EM system could efficiently promote proliferation and functional maintenance of LC lineage, providing a good cell source for testes-like tissue regeneration.

      • KCI등재

        Chondrogenic Differentiation and Three Dimensional Chondrogenesis of Human Adipose-Derived Stem Cells Induced by Engineered Cartilage-Derived Conditional Media

        Hengyun Sun,Yu Liu,Ting Jiang,Xia Liu,Aijuan He,Jie Li,Wenjie Zhang,Wei Liu,Yilin Cao,Guangdong Zhou 한국조직공학과 재생의학회 2014 조직공학과 재생의학 Vol.11 No.1

        Due to lack of optimal inductive protocols, how to effectively improve chondrogenesis of adipose-derived stem cells (ASCs) is still a great challenge. Our previous studies demonstrated that the culture media derived from chondrocyte-scaffold constructs (conditional media) contained various soluble chondrogenic factors and were effective for directing chondrogenic differentiation of bone marrow stem cells. Nevertheless, it remains unclear whether the conditional media can induce ASCs towards chondrogenic differentiation, especially for three-dimensional (3D) cartilage formation in a preshaped scaffold. In this study, it demonstrated that the conditional media derived from chondrocyte-scaffold constructs could promote ASCs to differentiate into chondrocyte-like cells, with similar expression of type II collagen to those induced by chondrogenic growth factors. Moreover, the expression level of chondrocyte-specific genes, such as SOX9, type II collagen, and COMP, was even higher in conditional medium group (CM) than that in optimized chondrogenic growth factor group (GF), indicating that the conditional media can serve as an effective inducer for chondrogenic differentiation of ASCs. Most importantly, the conditional media could also induce ASC-scaffold constructs to form 3D cartilage-like tissue with typical lacunae structures and positive expression of cartilage specific matrices, even higher contents of GAG and type II collagen were achieved in CM group compared to GF group. The current study establishes a simple, but stable, efficient, and economical method for directing 3D cartilage formation of ASCs, a strategy that may be more closely applicable for repairing cartilage defects.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼