RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Ginsenoside Rg3, a promising agent for NSCLC patients in the pandemic: a large-scale data mining and systemic biological analysis

        Zhenjie Zhuang,Qianying Chen,Xiaoying Zhong,Huiqi Chen,Runjia Yu,Ying Tang The Korean Society of Ginseng 2023 Journal of Ginseng Research Vol.47 No.2

        Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

      • KCI등재

        Coupled Discrete Crack and Porous Media Model for Hydraulic Fractures using the XFEM

        Bo He,Xiaoying Zhuang 대한토목학회 2019 KSCE JOURNAL OF CIVIL ENGINEERING Vol.23 No.3

        A hydromechanical model for investigating fluid flow in the fractured porous media is presented in this study. The hydromechanical coupling equations are derived from the mass and momentum balance equation for the saturated porous media. The extended finite element method is employed to model the discontinuity for fluid flow and cracks inside the porous media. The Newton-Raphson method is utilized for solving the nonlinear coupling equation with an implicit time integration scheme. Finally, examples are presented to demonstrate the effectiveness of the presented model. Fracture propagation in the porous media under the influence of the preexisted pressurized zone is also studied. It is found that the cracks and preexisted pressurized region have a significant impact on the fluid flow and deformation patterns.

      • KCI등재

        Numerical modeling of microcrack behavior in encapsulation-based self-healing concrete under uniaxial tension

        Luthfi Muhammad Mauludin,Bentang Arief Budiman,Sigit Puji Santosa,Xiaoying Zhuang,Timon Rabczuk 대한기계학회 2020 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.34 No.5

        We investigated microcrack behavior in encapsulation-based self-healing concrete subjected to uniaxial tension by using finite element analysis. 3D circular capsule with particular shell thickness embedded in the mortar matrix samples was modeled. To represent potential cracks, zero thickness cohesive elements with bi-linear traction-separation law were pre-inserted into the initially generated meshes. Effects of fracture strength variation among the mortar matrix, the capsule, and the interface between them on crack nucleation, initiation, and propagation were investigated. The results showed that the mismatch among fracture strengths of the capsule, the mortar matrix, and the interface of them has a significant influence on crack nucleation, initiation, and propagation. Using similar fracture strength between capsule and mortar matrix, together with high fracture strength of their interface, will initiate a crack from the mortar matrix and then propagate directly into the capsule. This condition is the most favorable case in the capsule-based self-healing concrete since a capsule contained with a healing agent will likely fracture. Thus, the self-healing process in the concrete can be achieved effectively. In addition, the interface with lower fracture strength than the mortar matrix and the capsule strengths will initiate a crack from the interface and then leave the capsule intact. Hence, the self-healing mechanism could not be achieved. These results will become some valuable assets for the experimentalists to assist in their experimental works.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼