RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Storage of High-Strength Steel Flux-Cored Welding Wires in Urbanized Areas

        Adrian Wolski,Aleksandra Świerczyńska,Grzegorz Lentka,Dariusz Fydrych 한국정밀공학회 2024 International Journal of Precision Engineering and Vol.11 No.1

        The condition of the consumables is a key factor determining the waste reduction in the welding processes and the quality of the welded joint. The paper presents the results of tests of four types of flux-cored wires dedicated for welding high-strength steels, stored for 1 month and 6 months in Poland in two urbanized areas: in a large seaside city (Gdańsk) and in Warsaw, located in the center of the country. The wires were subjected to macroscopic and microscopic (stereoscopic, SEM) observations, EDS analysis, technological tests assessing elastic properties and targetability. The degree of degradation of the wires was also tested using resistance measurements. In order to assess the effect of storing wires on the weldability of steel, the diffusible hydrogen content in deposited metal was determined by high-temperature extraction. It was found that the storage caused changes in the surface condition of the wires, affected their elasticity and electrical properties, which affects the behavior of the wires during welding. A significant influence of storage conditions on the hydrogenation of deposited metal was found: in the case of three types of wires, the level of low hydrogen processes was exceeded and the maximum result was 15.18 ml/100 g of deposited metal. It was also found that copper-plated wire showed a significantly increased resistance to storage conditions compared to non-copper-plated wires.

      • SCISCIESCOPUS

        Quantifying and Localizing the Mitochondrial Proteome Across Five Tissues in A Mouse Population

        Williams, Evan G.,Wu, Yibo,Wolski, Witold,Kim, Jun Yong,Lan, Jiayi,Hasan, Moaraj,Halter, Christian,Jha, Pooja,Ryu, Dongryeol,Auwerx, Johan,Aebersold, Ruedi American Society for Biochemistry and Molecular Bi 2018 Molecular and Cellular Proteomics Vol.17 No.9

        <P>We have used SWATH mass spectrometry to quantify 3648 proteins across 76 proteomes collected from genetically diverse BXD mouse strains in two fractions (mitochondria and total cell) from five tissues: liver, quadriceps, heart, brain, and brown adipose (BAT). Across tissues, expression covariation between genes' proteins and transcripts-measured in the same individuals-broadly aligned. Covariation was however far stronger in certain subsets than others: only 8% of transcripts in the lowest expression and variance quintile covaried with their protein, in contrast to 65% of transcripts in the highest quintiles. Key functional differences among the 3648 genes were also observed across tissues, with electron transport chain (ETC) genes particularly investigated. ETC complex proteins covary and form strong gene networks according to tissue, but their equivalent transcripts do not. Certain physiological consequences, such as the depletion of ATP synthase in BAT, are thus obscured in transcript data. Lastly, we compared the quantitative proteomic measurements between the total cell and mitochondrial fractions for the five tissues. The resulting enrichment score highlighted several hundred proteins which were strongly enriched in mitochondria, which included several dozen proteins were not reported in literature to be mitochondrially localized. Four of these candidates were selected for biochemical validation, where we found MTAP, SOAT2, and IMPDH2 to be localized inside the mitochondria, whereas ABCC6 was in the mitochondria-associated membrane. These findings demonstrate the synergies of a multi-omics approach to study complex metabolic processes, and this provides a resource for further discovery and analysis of proteoforms, modified proteins, and protein localization.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼