RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development of Fermentation Process for PLA-degrading Enzyme Production by a New Thermophilic Actinomadura sp. T16-1

        Sukhumaporn Sukkhum,Shinji Tokuyama,Vichien Kitpreechavanich 한국생물공학회 2009 Biotechnology and Bioprocess Engineering Vol.14 No.3

        The fermentation process for a poly (L-lactide) (PLA)-degrading enzyme production by a newly isolate of thermophilic PLAdegrading Actinomadura sp. T16-1 was investigated. The strain produced 33.9 U/mL of enzyme activity after cultivation at 50°C under shaking of 150 rpm for 96 h in a medium consisting of (w/v) 0.05% PLA film, 0.2% gelatin, 0.4% (NH4)2SO4, 0.4% K2HPO4, 0.2 % KH2PO4, and 0.02% MgSO4 ⋅ 7H2O. The optimal concentration of PLA film and gelatin obtained by response surface methodology (RSM) for the highest production of PLA-degrading enzyme was 0.035% (w/v) and 0.238% (w/v), respectively. Under these conditions, the model predicted 40.4 U/mL of PLA-degrading activity and the verification of the optimization showed 44.6 U/mL of PLA-degrading enzymatic activity in the flasks experiment. The maximum PLAdegrading activity reached 150 U/mL within 72 h cultivation in the 3-L airlift fermenter The fermentation process for a poly (L-lactide) (PLA)-degrading enzyme production by a newly isolate of thermophilic PLAdegrading Actinomadura sp. T16-1 was investigated. The strain produced 33.9 U/mL of enzyme activity after cultivation at 50°C under shaking of 150 rpm for 96 h in a medium consisting of (w/v) 0.05% PLA film, 0.2% gelatin, 0.4% (NH4)2SO4, 0.4% K2HPO4, 0.2 % KH2PO4, and 0.02% MgSO4 ⋅ 7H2O. The optimal concentration of PLA film and gelatin obtained by response surface methodology (RSM) for the highest production of PLA-degrading enzyme was 0.035% (w/v) and 0.238% (w/v), respectively. Under these conditions, the model predicted 40.4 U/mL of PLA-degrading activity and the verification of the optimization showed 44.6 U/mL of PLA-degrading enzymatic activity in the flasks experiment. The maximum PLAdegrading activity reached 150 U/mL within 72 h cultivation in the 3-L airlift fermenter

      • KCI등재

        Poly(L-Lactide)-Degrading Enzyme Production by Actinomadura keratinilytica T16-1 in 3 L Airlift Bioreactor and Its Degradation Ability for Biological Recycle

        ( Sukkhum ),( Sukhumaporn ),( Shinji Tokuyama ),( Vichien Kitpreechavanich ) 한국미생물 · 생명공학회 2012 Journal of microbiology and biotechnology Vol.22 No.1

        The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLAdegrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46oC. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLAdegrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼