RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A Combination of Traditional Control and Hybrid Modeling Methods for Intelligent Fluid Power Systems

        Veronique Bader,V. Remillard,D. Lenoble 유공압건설기계학회 2015 유공압건설기계학회 학술대회논문집 Vol.2015 No.10

        The necessity for greener and more efficient equipment has led OEMs and manufacturers to bring intelligence into fluid power systems. The integration of electronic controls in key components allow for better power management and safer work environment, which are two major concerns in the fluid power industry. One of the challenges of these new integrated solutions resides in the complexity of the design which involves many different expertise. Fluid Power, Electrical and Control Specialists need a communication platform to develop more efficient systems combining all technologies. Traditional control modeling methods are used to develop performant controllers with the help of equation-based or model-based software. However, more hybrid modeling methods – such as Machine Knowledge Management – are favored to design fluid power systems using integrated mechatronics software. By combining both methods to allow integration or co-simulation, control specialists will be properly integrated in the design and analysis process to build more intelligent machines.

      • Mechatronic Challenges to Develop and Implement New Hydraulic Technologies

        Richard Gagne,Vincent Remillard,Veronique Bader,Luca Berto 유공압건설기계학회 2016 유공압건설기계학회 학술대회논문집 Vol.2016 No.6

        A new generation of hydraulic components with their integrated control capability, provides more precision and flexibility, but brings implementation challenges. To cope with this changing reality, the fluid power industry needs to redefine work processes surrounding mechatronic machine development, including the creation of training programs. Although a new generation of students accustomed with numerical simulation technologies is starting to emerge, their applied knowledge is often very limited. In addition, experienced specialists who possess this expertise are also getting scarce and harder to replace. To facilitate this technological transition, simulation and numerical analysis tools seem promising. However, to truly be effective, these tools must enable a collaborative work environment that will leverage the machine knowledge of everyone involved in the development process. The goal of this paper is to provide hydraulic engineers with an optimized and integrated approach, in-line with the working process evolution. This approach is demonstrated by two case studies of electrohydraulic independent-metering valves systems. The first one is the development of a hydraulic and control simulation environment of a CMA Eaton valve. The second one studies the interactions of a virtual Sun Hydraulic valve system that regulates the actuator movement under different loads, co-simulated with a PLC.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼