RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Phase-coherent microwave-to-optical link with a self-referenced microcomb

        Del'Haye, Pascal,Coillet, Auré,lien,Fortier, Tara,Beha, Katja,Cole, Daniel C.,Yang, Ki Youl,Lee, Hansuek,Vahala, Kerry J.,Papp, Scott B.,Diddams, Scott A. Nature Publishing Group 2016 Nature photonics Vol.10 No.8

        <P>Precise measurements of the frequencies of light waves have become common with mode-locked laser frequency combs(1). Despite their huge success, optical frequency combs currently remain bulky and expensive laboratory devices. Integrated photonic microresonators are promising candidates for comb generators in out-of-the-lab applications, with the potential for reductions in cost, power consumption and size(2). Such advances will significantly impact fields ranging from spectroscopy and trace gas sensing(3) to astronomy(4), communications(5) and atomic time-keeping(6,7). Yet, in spite of the remarkable progress shown over recent years(8-10), microresonator frequency combs ('microcombs') have been without the key function of direct f-2f self-referencing(1), which enables precise determination of the absolute frequency of each comb line. Here, we realize this missing element using a 16.4 GHz microcomb that is coherently broadened to an octave-spanning spectrum and subsequently fully phase-stabilized to an atomic clock. We show phase-coherent control of the comb and demonstrate its low-noise operation.</P>

      • SCISCIESCOPUS

        High-Q surface-plasmon-polariton whispering-gallery microcavity

        Min, Bumki,Ostby, Eric,Sorger, Volker,Ulin-Avila, Erick,Yang, Lan,Zhang, Xiang,Vahala, Kerry Macmillan Publishers Limited. All rights reserved 2009 Nature Vol.457 No.7228

        Surface plasmon polaritons (SPPs) are electron density waves excited at the interfaces between metals and dielectric materials. Owing to their highly localized electromagnetic fields, they may be used for the transport and manipulation of photons on subwavelength scales. In particular, plasmonic resonant cavities represent an application that could exploit this field compression to create ultrasmall-mode-volume devices. A key figure of merit in this regard is the ratio of cavity quality factor, Q (related to the dissipation rate of photons confined to the cavity), to cavity mode volume, V (refs 10, 11). However, plasmonic cavity Q factors have so far been limited to values less than 100 both for visible and near-infrared wavelengths. Significantly, such values are far below the theoretically achievable Q factors for plasmonic resonant structures. Here we demonstrate a high-Q SPP whispering-gallery microcavity that is made by coating the surface of a high-Q silica microresonator with a thin layer of a noble metal. Using this structure, Q factors of 1,376 ± 65 can be achieved in the near infrared for surface-plasmonic whispering-gallery modes at room temperature. This nearly ideal value, which is close to the theoretical metal-loss-limited Q factor, is attributed to the suppression and minimization of radiation and scattering losses that are made possible by the geometrical structure and the fabrication method. The SPP eigenmodes, as well as the dielectric eigenmodes, are confined within the whispering-gallery microcavity and accessed evanescently using a single strand of low-loss, tapered optical waveguide. This coupling scheme provides a convenient way of selectively exciting and probing confined SPP eigenmodes. Up to 49.7 per cent of input power is coupled by phase-matching control between the microcavity SPP and the tapered fibre eigenmodes.

      • Broadband dispersion-engineered microresonator on a chip

        Yang, Ki Youl,Beha, Katja,Cole, Daniel C.,Yi, Xu,Del'Haye, Pascal,Lee, Hansuek,Li, Jiang,Oh, Dong Yoon,Diddams, Scott A.,Papp, Scott B.,Vahala, Kerry J. Nature Publishing Group 2016 Nature photonics Vol.10 No.5

        The control of dispersion in fibre optical waveguides is of critical importance to optical fibre communications systems and more recently for continuum generation from the ultraviolet to the mid-infrared. The wavelength at which the group velocity dispersion crosses zero can be set by varying the fibre core diameter or index step. Moreover, sophisticated methods to manipulate higher-order dispersion so as to shape and even flatten the dispersion over wide bandwidths are possible using multi-cladding fibres. Here we introduce design and fabrication techniques that allow analogous dispersion control in chip-integrated optical microresonators, and thereby demonstrate higher-order, wide-bandwidth dispersion control over an octave of spectrum. Importantly, the fabrication method we employ for dispersion control simultaneously permits optical Q factors above 100 million, which is critical for the efficient operation of nonlinear optical oscillators. Dispersion control in high-Q systems has become of great importance in recent years with increased interest in chip-integrable optical frequency combs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼