RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Acquisition, Processing and Image Generation System for Camera Data Onboard Spacecraft

        C.V.R Subbaraya Sastry,G.S Narayan Rao,N Ramakrishna,V.K Hariharan International Journal of Computer ScienceNetwork S 2023 International journal of computer science and netw Vol.23 No.3

        The primary goal of any communication spacecraft is to provide communication in variety of frequency bands based on mission requirements within the Indian mainland. Some of the spacecrafts operating in S-band utilizes a 6m or larger aperture Unfurlable Antenna (UFA for S-band links and provides coverage through five or more S-band spot beams over Indian mainland area. The Unfurlable antenna is larger than the satellite and so the antenna is stowed during launch. Upon reaching the orbit, the antenna is deployed using motors. The deployment status of any deployment mechanism will be monitored and verified by the telemetered values of micro-switch position before the start of deployment, during the deployment and after the completion of the total mechanism. In addition to these micro switches, a camera onboard will be used for capturing still images during primary and secondary deployments of UFA. The proposed checkout system is realized for validating the performance of the onboard camera as part of Integrated Spacecraft Testing (IST) conducted during payload checkout operations. It is designed for acquiring the payload data of onboard camera in real-time, followed by archiving, processing and generation of images in near real-time. This paper presents the architecture, design and implementation features of the acquisition, processing and Image generation system for Camera onboard spacecraft. Subsequently this system can be deployed in missions wherever similar requirement is envisaged.

      • Prediction of a research vessel manoeuvring using numerical PMM and free running tests

        Tiwari, Kunal,Hariharan, K.,Rameesha, T.V.,Krishnankutty, P. Techno-Press 2020 Ocean systems engineering Vol.10 No.3

        International Maritime Organisation (IMO) regulations insist on reduced emission of CO<sub>2</sub>, noxious and other environmentally dangerous gases from ship, which are usually let out while burning fossil fuel for running its propulsive machinery. Contrallability of ship during sailing has a direct implication on its course keeping and changing ability, and tries to have an optimised routing. Bad coursekeeping ability of a ship may lead to frequent use of rudder and resulting changes in the ship's drift angle. Consequently, it increases vessels resistance and also may lead to longer path for its journey due to zigzag movements. These adverse effects on the ship journey obviously lead to the increase in fuel consumption and higher emission. Hence, IMO has made it mandatory to evaluate the manoeuvring qualities of a ship at the designed stage itself. In this paper a numerical horizontal planar motion mechanism is simulated in CFD environment and from the force history, the hydrodynamic derivatives appearing in the manoeuvring equation of motion of a ship are estimated. These derivatives along with propeller thrust and rudder effects are used to simulate different standard manoeuvres of the vessel and check its parameters against the IMO requirements. The present study also simulates these manoeuvres by using numerical free running model for the same ship. The results obtained from both these studies are presented and discussed here.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼