RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Thermal Characterization of Alkali Treated Kenaf Fibers and Kenaf-Epoxy Composites

        Levi Gardner,Troy Munro,Ezekiel Villarreal,Kurt Harris,Thomas Fronk,Heng Ban 한국섬유공학회 2018 Fibers and polymers Vol.19 No.2

        Chemical treatment of natural fibers is a well-defined means of mechanical property improvement in natural fiberreinforced composites. An understanding of mechanical and thermal properties in these media is essential for evaluating heat transfer, thermal degradation, and overall performance of these composites over their product lifetime. However, very little information is available illustrating the effect of such treatment on the thermal properties of kenaf composites. Also, no study to date has reported the thermal conductivity of individual kenaf fibers. This study reports the effects of fiber treatment (in 6 % NaOH) on thermal transport in unidirectionally oriented kenaf-epoxy composites and individual kenaf fibers. The effective thermal conductivities and thermal diffusivities of chemically treated fiber composites show a general increase over untreated fiber composites (0.210 to 0.232 W/m/K at 28 ℃, 0.206 to 0.234 W/m/K at 200 ℃). This improvement may be attributed to improved interfacial contact between the fibers and epoxy matrix shown in microstructural images after chemical treatment. The thermal conductivity of individual fibers was evaluated at room temperature using two techniques. Results from both techniques showed slight increases after chemical treatment (0.58±0.53 to 1.0±0.13 W/m/K and 1.2±0.54 to 1.6±0.28 W/m/K) but lacked statistical significance. Any improvement in surface crystallinity after chemical treatmentdoes not appear to affect overall fiber thermal conductivity. A better understanding of thermal transport in kenaf fibers and composites enables better estimation of the performance of these composites in different applications. Moreover, the thermal conductivities of individual fibers are useful in understanding the fiber’s contribution to conduction in different fiber reinforcement configurations.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼