RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Energy level alignment of blended organic semiconductors and electrodes at the interface

        T.J. Whitcher,W.S. Wong,A.N. Talik,K.L. Woon,A. Rusydi,N. Chanlek,H. Nakajima,T. Saisopa,P. Songsiriritthigul 한국물리학회 2018 Current Applied Physics Vol.18 No.9

        The energy level alignment of a blended mixture of organic semiconductors is often depicted as having a common vacuum level. However, this is not a universal phenomenon among the vast number of organic semiconductors that currently exist, as in many cases the energy levels align via the Fermi level. In this report, the energy level alignments of the mixtures; poly(9-vinylcarbazole) (PVK) and 2,7-bis(diphenylphosphoryl)-9,9′- spirobifluorene (SPPO13) and poly(3-hexylthiophene-2,5-diyl) (P3HT) and SPPO13, with varying SPPO13 concentrations, are measured. It was found that the blended systems exhibit two different vacuum levels with the dipole between the PVK and SPPO13 increasing with the SPPO13 concentration, whilst the P3HT and SPPO13 vacuum levels only experience a small change. This is attributed to the decreasing electronic screening with increasing SPPO13 concentration. These new observations have an important implication in our understanding of interfacial behaviour for blended systems commonly used in various organic electronic devices.

      • KCI등재

        The effect of carbon contamination and argon ion sputtering on the work function of chlorinated indium tin oxide

        T.J. Whitcher,K.H. Yeoh,C.L. Chua,K.L. Woon,N. Chanlek,H. Nakajima,T. Saisopa,P. Songsiriritthigul 한국물리학회 2014 Current Applied Physics Vol.14 No.3

        The work function of indium tin oxide (ITO) was increased by treating ITO with dichlorobenzene with UV light. Carbon contamination of the Cl-ITO was measured using X-ray Photoelectron Spectroscopy (XPS) and argon ion sputtering was used to remove the carbon from the surface. It was found that the carbon contamination from residual dichlorobenzene significantly lowered the work function of the ITO and after argon ion sputtering the work function increased to 5.8 eV. It was found that chlorination of ITO occurs after more than 6 min of UV exposure. Further sputtering of ITO resulted in the removal of the functionalized chlorine, the introduction of argon ion contaminants on the ITO decreases its work function.

      • KCI등재

        In-situ analysis energy level alignment at solution processed HAT(CN)6/PVK (PVK:TAPC) interface via XPS and UPS

        N.A. Talik,B.K. Yap,C.Y. Tan,T.J. Whitcher 한국물리학회 2017 Current Applied Physics Vol.17 No.8

        We present in-depth analysis of an n/p heterojunction that consists of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT(CN)6) (n-type) and Poly(9-vinylcarbazole) (PVK) (p-type) via X-ray Photoelectron Spectroscopy (XPS) and Ultra-violet Photoelectron Spectroscopy (UPS) measurement. The p-type layer is doped with 2 wt% of 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC). The energy difference (DE) at the hetero-junction, magnitude of band bending (Vb) and the vacuum level shift at the interface is modified when PVK is doped with 2 wt% TAPC. The presence of Vb at the HAT(CN)6/PVK (PVK:TAPC) interface makes it easier to reach a DE z 0 energy offset in order to facilitate charge generation at the interface. Via a Fowler-Nordheim (FN) tunneling curve, it is found that the electron extraction from PVK to HAT(CN)6 at the interface could occur via the tunneling process. This finding provides new insights into novel solutions for high efficiency tandem OLEDs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼