RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A critical review of slag and fly-ash based geopolymer concrete

        Tülin Akçaoğlu,Beste Çubukçuoğlu,Ashraf Awad 사단법인 한국계산역학회 2019 Computers and Concrete, An International Journal Vol.24 No.5

        Today, concrete remains the most important, durable, and reliable material that has been used in the construction sector, making it the most commonly used material after water. However, cement continues to exert many negative effects on the environment, including the production of carbon dioxide (CO2), which pollutes the atmosphere. Cement production is costly, and it also consumes energy and natural non- renewable resources, which are critical for sustainability. These factors represent the motivation for researchers to examine the various alternatives that can reduce the effects on the environment, natural resources, and energy consumption and enhance the mechanical properties of concrete. Geopolymer is one alternative that has been investigated; this can be produced using aluminosilicate materials such as low calcium (class F) FA, Ultra-Fine GGBS, and high calcium FA (class C, which are available worldwide as industrial, agricultural byproducts.). It has a high percentage of silica and alumina, which react with alkaline solution (activators). Aluminosilicate gel, which forms as a result of this reaction, is an effective binding material for the concrete. This paper presents an up-to-date review regarding the important engineering properties of geopolymer formed by FA and slag binders; the findings demonstrate that this type of geopolymer could be an adequate alternative to ordinary Portland cement (OPC). Due to the significant positive mechanical properties of slag-FA geopolymer cements and their positive effects on the environment, it represents a material that could potentially be used in the construction industry.

      • KCI등재

        P-value significance level test for high-performance steel fiber concrete (HPSFC)

        Abdulhameed U. Abubakar,Tülin Akçaoğlu and Khaled Marar 사단법인 한국계산역학회 2018 Computers and Concrete, An International Journal Vol.21 No.5

        Statistical analysis has found useful application in the design of experiments (DOE) especially optimization of concrete ingredients however, to be able to apply the concept properly using computer aided applications there has to be an upper and lower limits of responses fed to the system. In this study, the production of high-performance steel fiber concrete (HPSFC) at five different fiber addition levels by volume with two aspect ratios of 60 and 83 were studied under two curing methods completely dry cured (DC) and moist cured (MC) conditions. In other words, this study was carried out for those limits based on material properties available in North Cyprus. Specimens utilized were cubes 100 mm size casted and cured for 28 days and tested for compressive strength. Minitab 18 statistical software was utilized for the analysis of results at a 5 per cent level of significance. Experimentally, it was observed that, there was fluctuation in compressive strength results for the two aspect ratios and curing regimes. On the other hand P-value hypothesis evaluation of the response showed that at the stated level of significance, there was a statistically significant difference between dry and moist curing conditions. Upper and lower limit values were proposed for the response to be utilized in DOE for future studies based on these material properties. It was also suggested that for a narrow confidence interval and accuracy of the system, future study should increase the sample size.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼