RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Process modeling and optimization for torrefaction of forest residues

        Bach, Quang-Vu,Skreiberg, Øyvind,Lee, Chul-Jin Elsevier 2017 ENERGY Vol.138 No.-

        <P><B>Abstract</B></P> <P>This work aims to build a comprehensive biomass torrefaction model, which can provide a wide range of information essential for industrialization and commercialization of the process. Norwegian forest residue (birch branches) was chosen as feedstock. The model is capable of presenting detailed distributions of main and by-products from the torrefaction process. In addition, important fuel properties (ultimate analysis and heating value) of the main solid product after torrefaction can be predicted. The model is validated and simulation results show good agreement with available experimental data in the literature. Reduction in mass and energy yields as well as improvement in heating value of torrefied biomass with increasing torrefaction temperature are observed. Trends for carbon, oxygen and hydrogen contents are also consistent with other experimental works. Moreover, overall energy consumption and process energy efficiency can be estimated from the model. It reveals that drying accounts for 76–80% of the total heat demand. Furthermore, the process energy efficiency reduces with increasing temperature, thus torrefaction at high temperatures is not advisable. More importantly, process optimization shows that optimal conditions for torrefaction of birch branches are 30 min holding time and a temperature between 275 and 278 °C.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Completed torrefaction model has been built in the Aspen Plus and validated by experimental data. </LI> <LI> The model is capable of providing the distributions of both the torrefied biomass and by-products. </LI> <LI> The model reveals that drying accounts for 76–80% of the total heat demand. </LI> <LI> A temperature within 275–278 °C is optimal for a torrefaction time of 30 min for birch branches. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼