RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Simulations for the flow of viscoplastic fluids in a cavity driven by the movement of walls by Lattice Boltzmann Method

        Siva Subrahmanyam Mendu,Prasanta Kumar Das 한국유변학회 2020 Korea-Australia rheology journal Vol.32 No.3

        The current paper is focused on analyzing the flow of viscoplastic fluid in a cavity that is driven by the two walls. The Lattice Boltzmann method (LBM) is used to solve the discrete Boltzmann equation. To represent the stress-strain rate relationship of viscoplastic fluids, the Bingham Papanastasiou constitutive model is considered. Cavity flow filled with Bingham fluids is considered for validating the present LBM code. After successful validation of the code, the analysis is extended for three dissimilar wall motions- simultaneous and opposed movement of the parallel facing walls, and the simultaneous motion of non-facing walls. The flow dynamics of Bingham fluid is influenced by Reynolds and Bingham numbers which can be studied using velocity and streamline plots. Subsequently, the yielded and un-yielded zones in a cavity have been effectively tracked using the limiting condition of yield stress. Further, the effect of wall motion on the variation of those zones inside a cavity has been studied. Finally, the drag coefficient for considered wall motions is presented.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼