RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Molecular simulation for thermoelectric properties of c-axis oriented hexagonal GeSbTe model clusters

        Vora-ud, A.,Rittiruam, M.,Kumar, M.,Han, J.G.,Seetawan, T. Elsevier Ltd 2016 Materials & Design Vol.89 No.-

        <P>Using a combination of molecular orbital and molecular dynamics simulations, electronic and thermoelectric properties of GeSbTe model clusters are presented. The unit cells of Ge13Sb20Te52, Ge7Sb12Te40 and Ge14Sb6Te26 model clusters are designed corresponding to GeSb2Te4, GeSb4Te7 and Ge2Sb2Te5 compositions in hexagonal phase, oriented in the c-axis direction. The electronic structures of clusters have been simulated by discrete-variational molecular orbital calculation using Hartree-Fock-Slater approximation to determine the electrical conductivity and Seebeck coefficients in Mott expression. For thermal properties, molecular dynamics simulations have been employed on clusters in amorphous, cubic and hexagonal phases using Verlet's algorithm and subsequently using Green-Kubo relation for lattice thermal conductivity. We assumed inter-atomic interaction, defined by the Morse-type potential function added to Busing-Ida potential function, which considers partial electronic charges on the ions, bond length of the cation-anion pair, and depth and shape of the potential. Based on our simulations, detailed variation of electrical conductivity, carrier thermal conductivity, lattice thermal conductivity, Seebeck coefficients, power factor and figure of merit, are presented as a function of temperature in 300-700 K range. Thermoelectric parameters obtained in present study were compared and explained with those of experimentally results of Ge2Sb2Te5 composition in hexagonal phase. (C) 2015 Elsevier Ltd. All rights reserved.</P>

      • KCI등재

        Affected annealing time treatment on preferred orientation and thermoelectric properties of heGeSbTe0.5 alloy thin film

        Athorn Voraeud,Somporn Thaowonkaew,Meena Rittiruam,Mati Horprathum,Tosawat Seetawan 한국물리학회 2016 Current Applied Physics Vol.16 No.3

        GeSbTe0.5 hexagonal phase thin film (heGeSbTe0.5) has been deposited on silicon wafer with 1 mm thick silicon dioxide (SiO2/Si) by pulsed dc magnetron sputtering using a 99.99% of 1: 1: 1 ratio of Ge: Sb: Te target at ambient temperature. The asedeposited thin film has been deposited time for 60 min and annealed at temperature 673 K each for 15, 30, 45 and 60 min at high vacuum state. The effected annealing time treatment (ta) on phase preferred orientation, morphology and film thickness (d), atomic composition, carrier concentration (n) and mobility (m) and Seebeck coefficient have been investigated by Xeray diffraction (XRD), fieldeemission scanning electron microscopy (FEeSEM), Auger electron microscopy (AES), Hall Effect measurement and steady state method, respectively. The obtained results of as edeposited thin film is amorphous with Ge:Sb:Te; 1:0.7:0.5 atomic ratio and showed the crystal phases of hexagonal structure with Ge:Sb:Te; 1:1:0.5 atomic ratio after annealing at 673 K. The annealed time 45 min of heGeSbTe0.5 thin film was yielded good thermoelectric properties with highest carrier concentration 3.35 1021 cm3, Seebeck coefficient 78.50 mV K1and power factor 3.95 104 Wm1 K2.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼