RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        DRAG REDUCTION PREDICTION OF AHMED MODEL WITH TRAVELING WAVE BASED ON BP NEURAL NETWORK

        Hu Xingjun Hu,Jinglong Zhang,Yufei Luo,Jingyu Wang,Pengzhan Ma,Wei Lan,Chunbo Dong 한국자동차공학회 2022 International journal of automotive technology Vol.23 No.5

        In this paper, a traveling wave model is proposed to explore its influence on the aerodynamic drag of a Ahmed model, the experimental and numerical results of aerodynamic drag coefficient CD for the Ahmed model are in good agreement. Then by defining the aerodynamic benefit coefficient ΔCD as the evaluation index for the orthogonal experiment, range analysis is conducted to determine the influences of the amplitude A, wavelength λ and frequency ω of the wave and the vehicle speed u on ΔCD. After the analysis it can been found that λ has the least importance among these parameters, hence A, ω and u are used to construct the 105 samples for training the BP neural network to predict ΔCD, results show that ΔCD obtained from the neural network is significantly affected by the parameters of traveling wave. The prediction accuracy of the network is furtherly verified by another 15 samples which are also built on A, ω and u, and the corresponding data overlap rate of ΔCD is 96 %, so it can be concluded that the BP neural network constructed in this paper is accurate enough to predict ΔCD.

      • KCI등재

        Aerodynamic drag reduction based on static traveling wave structure

        Xingjun Hu,Zewei Wang,Jiuchao Li,Guo Yu,Jingyu Wang,Wei Lan,Jinglong Zhang,Pengzhan Ma 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.5

        To explore the influence of the traveling wave parameters on the aerodynamic characteristics of Ahmed models, the geometric model of the traveling wave wall is used as the study object, and the influence of the traveling wave geometric parameters on aerodynamic drag is studied by numerical simulation. A cosine-type traveling wave digital model is established on the basis of Ahmed’s original model. Results show that the static traveling wave structure can play a good role in reducing drag under some driving conditions. The traveling wave’s drag reduction characteristics are affected by the layout position, depth, wavelength, and other related parameters and more affected by driving speed. Finally, a group of working conditions with good drag reduction effects is selected, and the principle of drag reduction by using static traveling wave structure is explained qualitatively and quantitatively through velocity field, shear stress, and pressure field.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼