RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Lysophosphatidic acid activates the RhoA and NF-κB through Akt/IκBα signaling and promotes prostate cancer invasion and progression by enhancing functional invadopodia formation

        Hwang, Young Sun,Lee, Jongsung,Zhang, Xianglan,Lindholm, Paul F. Springer-Verlag 2016 TUMOR BIOLOGY Vol.37 No.5

        <P>We have demonstrated previously that increased RhoA and nuclear factor (NF)-kappa B activities are associated with increased PC-3 prostate cancer cell invasion and that lysophosphatidic acid (LPA) significantly increases cancer invasion through RhoA and NF-kappa B activation. In this study, we identified the intermediate signaling molecules and specialized cell structures which are activated by LPA, resulting in enhanced cellular invasion. LPA-induced Akt and I kappa B alpha signaling pathways were necessary for RhoA and NF-kappa B activation, and these LPA effects were abolished by RhoA inhibition. Mice injected with PC-3 cells expressing dominant negative RhoA N19 developed significantly less tumor growth compared with those injected with control (pcDNA 3.1). In addition, LPA treatment increased functional invadopodia formation. Activation of RhoA and NF -kappa B through the Akt and I kappa B alpha signaling pathway was required for LPA-stimulated gelatin degradation activity. LPA administration increased tumor growth and osteolytic lesions in a mouse xenograft model. These results indicate that LPA promotes PC-3 cell invasion by increasing functional invadopodia formation via upregulating RhoA and NF-kappa B signaling which contributes to prostate cancer progression. Therefore, the LPA and RhoA-NF-kappa B signaling axis may represent key molecular targets to inhibit prostate cancer invasion and progression.</P>

      • KCI등재

        Constitutive and Inducible Expression of Invasionrelated Factors in PC-3 Prostate Cancer Cells

        황영선,Paul F. Lindholm 대한암예방학회 2015 Journal of cancer prevention Vol.20 No.2

        Background:Tumor growth and invasion are interconnected with the tumor microenvironment. Overexpression of genes that regulate cancer cell invasion by growth factors, cytokines, and lipid factors can affect cancer aggressiveness. A comparative gene expression analysis between highly invasive and low invasive cells revealed that various genes are differentially expressed in association with invasive potential. In this study, we selected variant PC-3 prostate cancer cell sublines and discovered critical molecules that contributed to their invasive potential. Methods: The high invasive and low invasive variant PC-3 cell sublines were obtained by serial selection following Matrigel-coated Transwell invasion and were characterized by Transwell invasion, luciferase reporter assay, and Rhotekin pull-down assay. Lysophosphatidic acid (LPA) was added to the cultures to observe the response to this extracellular stimulus. The essential molecules related with cancer invasiveness were detected with Northern blotting, quantitative reverse transcription-polymerase chain reaction, and cDNA microarray. Results:Highly invasive PC-3 cells showed higher nuclear factor kappa B (NF-κB), activator protein 1 (AP-1) and RhoA activities than of low invasive PC-3 cells. LPA promoted cancer invasion through NF-κB, AP-1, and RhoA activities. Thrombospondin-1, interleukin-8, kallikrein 6, matrix metalloproteinase-1, and tissue factor were overexpressed in the highly invasive PC-3 variant cells and further upregulated by LPA stimulation. Conclusions:The results suggest that the target molecules are involved in invasiveness of prostate cancer. These molecules may have clinical value for anti-invasion therapy by serving as biomarkers for the prediction of aggressive cancers and the detection of pharmacological inhibitors.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼