RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Optimization of the Multi-Level Spring Restrainer for Bridges by Hybrid Particle Swarm and Gravitational Search Algorithm

        Mustafa Kareem Hamzah,Farzad Hejazi,Najad Ayyash 한국강구조학회 2023 International Journal of Steel Structures Vol.23 No.4

        This paper proposes a new multi-level spring restrainer (MLSR) that exhibits multi stiffness performance in different levels of movement of bridge superstructure to prevent unseating during applied dynamic loads. The analytical model of the proposed MLSR was formulated and the fabricated prototype was tested using dynamic actuator. Based on the developed analytical mode, the function of MLSR device relied on 12 parameters that further complicated the design process to achieve the best performance. However, the conventional optimization techniques utilized only one or a few factors for simple systems. Therefore, a multi-objective optimization method is proposed in this study by introducing the hybridization of Particle Swarm Optimization and Gravitational Search algorithm (PSOGSA) to optimize the restrainer parameters, as well as to improve the seismic performance of bridges using the optimum design. The optimized MLSR was implemented in the bridge subjected to multi-directional ground motion and its multi-level action to prevent unseating of bridge deck when the applied excitation was evaluated. The optimization process revealed girder displacement in three directions and the number of plastic hinges decreased from 44 to 99% for the optimized design. The time history analysis disclosed that the use of optimized MLSR device decreased the structural seismic response, such as the 3D deck movements, from 79 to 90%. Next, the base shear and drift ratio of bridge bent reduced to 75 and 85% in longitudinal direction and to 72 and 90% in transverse direction, correspondingly. The outcomes signify that the proposed MLSR device and the optimization algorithm have successfully improved the bridge structure resistance against severe ground motions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼