RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Investigation of the thermodynamic performance of an existing steam power plant via energy and exergy analyses to restrain the environmental repercussions: A simulation study

        Muhammad Haris Hamayun,Murid Hussain,Iqrash Shafiq,Ashfaq Ahmed,Young-Kwon Park 대한환경공학회 2022 Environmental Engineering Research Vol.27 No.1

        Exergy analysis is an important tool to identify the improvements in various industrial processes. In this study, the existing steam power plant is examined based on energy and exergy analyses. The steam network in the power plant is comprised of two sections, one of them is used for paddy drying, while other portion is used to operate the turbine for in-house electricity production. Mass, energy, and exergy balances are applied to individual equipment of the plant. The power plant is modeled and simulated using Aspen HYSYS® V10. The calculated thermodynamic values are used for in-depth analysis of the power plant. Case-studies are included in this study to show the effect of various operational parameters on the process efficiency. The analysis shows that the boiler is the major source of exergy destruction, because of the incomplete combustion process, and inappropriate insulations. The remedial actions are also suggested in the study.

      • KCI등재

        Exergoeconomic analysis of an LNG integrated - air separation process

        Hamayun Muhammad Haris,Ramzan Naveed,Faheem Muhammad 한국화학공학회 2023 Korean Journal of Chemical Engineering Vol.40 No.12

        An integrated LNG regasification - air separation process is investigated using exergy and exergoeconomic analyses. The objective of developing this integrated process is to lower the calorific value of LNG by mixing regasified LNG with high purity nitrogen, while simultaneously recovering and utilizing valuable cryogenic energy from the LNG during its regasification to minimize the power consumption of the air separation unit (ASU) for nitrogen production. The overall exergy efficiency and exergy destruction of the integrated process are 76.47% and 28.52MW, respectively, with the compression section causing the most exergy destruction. Further exergoeconomic analysis of the proposed process reveals that the air compressors have the highest capital investment (CI) and operating and maintenance (O&M) cost rates, the pumps for cooling water and LNG have the highest exergoeconomic factors, and the low-pressure column and a multistream heat exchanger have the highest exergy destruction cost rates. A parametric study is also conducted to examine the impact of economic variables including interest rate, plant life, and compressor performance on exergy destruction, CI and O&M cost rates, and exergoeconomic factor. The findings of this study offer valuable insight into the design and optimization of similar integrated processes, with potential benefits for the energy industry.

      • KCI등재

        A comprehensive numerical design of firefighting systems for onshore petroleum installations

        Iqrash Shafiq,Murid Hussain,Sumeer Shafique,Muhammad Haris Hamayun,Muhammad Mudassir,Zeeshan Nawaz,Ashfaq Ahmed,박영권 한국화학공학회 2021 Korean Journal of Chemical Engineering Vol.38 No.9

        Petroleum facilities containing welded steel bulk flammable liquid product storage tanks possess sundry fire hazards inherent to the facility. These installations urgently require indigenous efficient firefighting systems. So, the efficient design of firewater and firefighting foam system is dynamic in controlling fire-related emergencies. The paper deals with the in-depth conceptualization of the design and analysis of firefighting systems for a typical petroleum handling, processing and storage facility in compliance with international standards. The study is aimed to formulate the elementary technique for designing an optimized firefighting system. The proposed objective was achieved by considering an ideal tank farm site that is most commonly located in a range of terminal stations, pumping stations, petroleum refineries, well sites, etc. Sufficient illumination was enumerated on the standardized classification of the liquid fuel product with respect their flammability range. Special guidelines regarding firefighting system design basis were defined and an optimized firefighting and foam system design was developed. Moreover, sufficient limitations that must be considered during the firefighting of huge tank fires are discussed. This comprehensive numerical design philosophy offers a simple and wide-ranging guide to industrial practitioners by formulating the principles for industrial firefighting system design.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼