RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Geometric and electric properties of graphitic carbon nitride sheet with embedded single manganese atom under bi-axial tensile strain

        Yusuf Zuntu Abdullahi,Tiem Leong Yoon,Mohd Mahadi Halim,Md. Roslan Hashim,Mohd. Zubir Mat Jafri,Lim Thong Leng 한국물리학회 2016 Current Applied Physics Vol.16 No.8

        In this paper, geometric, electric and magnetic properties of graphitic heptazine with embedded Mn atom under bi-axial tensile strain are investigated using density-functional theory with the spin polarized generalized gradient approximation and Hubbard U correction. The binding energy computed for the systems are found to uniformly decrease with the increase in small bi-axial tensile strain (0e5%). The decrease of the binding energy can be related to the increase in the NeCeN bond angle within the cavity which tries to recover its sp2 hybridized bond. The projected density of states (PDOS) of strained/unstrained systems is also computed. It is found that the covalent bonding of the 6 nitrogen atoms located at the edge of the cavity and the embedded manganese atom in CN1 is mainly contributed by s, dzx and dz2 of the Mn atom, as well as the sp-like orbitals of these nitrogen atoms in the majority spin state respectively. Our calculations also predict enhanced band gap (0.67 eV at zero strain, 1.12 eV at 4% strain) induced by small amount of bi-axial tensile strain. The increase in band gap can be attributed to the structural distortions of the sheet caused by the symmetric deformations which lead to the backward shift in the s-like orbitals states of the CN1 atoms. Such properties may be desirable for diluted magnetic semiconductors, future spintronics, molecular magnet and nanoelectronics devices.

      • SCIESCOPUSKCI등재

        Characterization of Rhizophora SPP. particleboards with SOY protein isolate modified with NaOH/IA-PAE adhesive for use as phantom material at photon energies of 16.59-25.26 keV

        Samson, Damilola Oluwafemi,Shukri, Ahmad,Mat Jafri, Mohd Zubir,Hashim, Rokiah,Sulaiman, Othman,Aziz, Mohd Zahri Abdul,Yusof, Mohd Fahmi Mohd Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.1

        In this work, Rhizophora spp. particleboard phantoms were made using SPI-based adhesives, modified with sodium hydroxide and itaconic acid polyamidoamine-epichlorohydrin (0, 5, 10, and 15 wt%). An X-ray computed tomography (CT) imaging system was used to ascertain the CT numbers and density distribution profiles of the particleboards. The SPI-based/NaOH/IA-PAE/Rhizophora spp. particleboard phantoms with 15 wt% IA-PAE addition level had the highest solid content, flexural strength, flexural modulus, and internal bonding strength of 36.06 ± 1.08%, 18.61 ± 0.38 Nmm<sup>-2</sup>, 7605.76 ± 0.89 Nmm<sup>-2</sup>, and 0.463 ± 0.053 Nmm<sup>-2</sup>, respectively. The moisture content, mass density, water absorption, and dimensional stability were 6.93 ± 0.27%, 0.962 ± 0.037 gcm<sup>-3</sup>, 22.36 ± 2.47%, and 10.90 ± 0.86%, respectively. The results revealed that the mass attenuation coefficients and effective atomic number values within the 16.59-25.26 keV photon energy region, were close to the calculated XCOM values in water, with a p-value of 0.077. Moreover, the CT images showed that the dissimilarities in the discrepancy of the profile density decreased as the IA-PAE concentrations increased. Therefore, these results support the appropriateness of the SPI-based/NaOH/IA-PAE/Rhizophora spp. particleboard with 15 wt% IA-PAE adhesive as a suitable tissue-equivalent phantom material for medical health applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼