RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Mercury ion adsorption on AC@Fe3O4-NH2-COOH from saline solutions: Experimental studies and artificial neural network modeling

        Mohammad Pazouki,Mohammad Zabihi,Jalal Shayegan,Mohammad Hossein Fatehi 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.3

        An efficient, novel functionalized supported magnetic nanoparticle (AC@Fe3O4-NH2-COOH) has been synthesized by co-precipitation method for removal of mercury ions from saline solutions. High dispersed supported magnetic nanoparticles with particle sizes less than 30 nm were formed over activated carbon derived from local walnut shell. Surface characterizations of supported magnetic nanoparticles were evaluated by Boehm test, Brunauer- Emmett-Teller (BET) surface area, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). A three-layer artificial neural network (ANN) code was developed to predict the Hg (II) ions removal from aqueous solution by AC@Fe3O4-NH2-COOH. The three-layer back-propagation (BP) is configured of tangent sigmoid transfer function (tansig) at hidden layer with eight neurons for AC@Fe3O4-NH2-COOH, and linear transfer function (purelin) at output layer. According to the calculated MSEs, Levenberg-Marquardt algorithm (LMA) was the best training algorithm among others. The linear regressions between the predicted and experimental outputs were proven to be a good agreement with a correlation coefficient of about 0.9984 for five model variables. Maximum adsorption capacity was achieved 80mg/g by Langmuir isotherm at pH of 7 and salinity of 25,000 ppm. Kinetic studies illustrated that mercury adsorption follows pseudo-second-order.

      • KCI등재

        Global sensitivity analysis improvement of rotor-bearing system based on the Genetic Based Latine Hypercube Sampling (GBLHS) method

        Mohammad Reza Fatehi,Afshin Ghanbarzadeh,Shapour Moradi,Ali Hajnayeb 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.68 No.5

        Sobol method is applied as a powerful variance decomposition technique in the field of global sensitivity analysis (GSA). The paper is devoted to increase convergence speed of the extracted Sobol indices using a new proposed sampling technique called genetic based Latine hypercube sampling (GBLHS). This technique is indeed an improved version of restricted Latine hypercube sampling (LHS) and the optimization algorithm is inspired from genetic algorithm in a new approach. The new approach is based on the optimization of minimax value of LHS arrays using manipulation of array indices as chromosomes in genetic algorithm. The improved Sobol method is implemented to perform factor prioritization and fixing of an uncertain comprehensive high speed rotor-bearing system. The finite element method is employed for rotor-bearing modeling by considering Eshleman-Eubanks assumption and interaction of axial force on the rotor whirling behavior. The performance of the GBLHS technique are compared with the Monte Carlo Simulation (MCS), LHS and Optimized LHS (Minimax. criteria). Comparison of the GBLHS with other techniques demonstrates its capability for increasing convergence speed of the sensitivity indices and improving computational time of the GSA.

      • KCI등재

        Incompressible SPH modeling and analysis of non-Newtonian power-law fluids, mixing in a microchannel with an oscillating stirrer

        Rahim Shamsoddini,Mohammad Sefid,Rouhollah Fatehi 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.1

        In the present study, a robust Incompressible smoothed particle hydrodynamics (ISPH) method, based on an advanced Smoothed particlehydrodynamics (SPH) discretization, is introduced to study the effects of the non-Newtonian power-law index and stirrer frequencyon fluid mixing in an active micromixer that uses an oscillating stir-bar. Two Reynolds numbers (20 and 72) are considered, and morethan 70 SPH simulations are carried out, in order to investigate the effects of the power-law index and stirrer frequency on fluid mixing. The results show that this active micromixer is more efficient at the lower power-law indices.

      • Mechanism of failure in the Semi-Circular Bend (SCB) specimen of gypsum-concrete with an edge notch

        Jinwei Fu,Vahab Sarfarazi,Mohammad Fatehi Marji,Mengdi Guo 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.81 No.1

        The effects of interaction between concrete-gypsum interface and edge crack on the failure behavior of the specimens in senicircular bend (SCB) test were studied in the laboratory and also simulated numerically using the discrete element method. Some quarter circular specimens of gypsum and concrete with 5 cm radii and hieghts were separately prepared. Then the semicircular testing specimens were made by attaching one gypsum and one concrete sample to one another using a special glue and one edge crack is produced (in the interface) by do not using the glue in that part of the interface. The tensile strengths of concrete and gypsum samples were separately measured as 2.2 MPa and 1.3 MPa, respectively. during all testing performances a constant loading rate of 0.005 mm/s were stablished. The proposed testing method showed that the mechanism of failure and fracture in the brittle materials were mostly governed by the dimensions and number of discontinuities. The fracture toughnesses of the SCB samples were related to the fracture patterns during the failure processes of these specimens. The tensile behaviour of edge notch was related to the number of induced tensile cracks which were increased by decreasing the joint length. The fracture toughness of samples was constant by increasing the joint length. The failure process and fracture pattern in the notched semi-circular bending specimens were similar for both methods used in this study (i.e., the laboratory tests and the simulation procedure using the particle flow code (PFC2D)).

      • SCIESCOPUS

        Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters

        Nikadat, Nooraddin,Marji, Mohammad Fatehi Techno-Press 2016 Geomechanics & engineering Vol.11 No.2

        The jointed rock mass behavior often plays a major role in the design of underground excavation, and their failures during excavation and in operation, are usually closely related to joints. This research attempts to evaluate the effects of two basic geometric factors influencing tunnel behavior in a jointed rock mass; joints spacing and joints orientation. A hybridized indirect boundary element code known as TFSDDM (Two-dimensional Fictitious Stress Displacement Discontinuity Method) is used to study the stress distribution around the tunnels excavated in jointed rock masses. This numerical analysis revealed that both the dip angle and spacing of joints have important influences on stress distribution on tunnel walls. For example the tensile and compressive tangential stresses at the boundary of the circular tunnel increase by reduction in the joint spacing, and by increase the dip joint angle the tensile stress in the tunnel roof decreases.

      • KCI등재

        Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D

        Vahab Sarfarazi,Hadi Haeri,Mohammad Fatehi Marji 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.69 No.1

        In this research, the effect of bedding layer on the tensile failure mechanism of rocks has been investigated using PFC2D. For this purpose, firstly calibration of PFC2d was performed using Brazilian tensile strength. Secondly Brazilian test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from 0° to 90° with increment of 15°. Totally, 21 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than 15, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It’s to be noted that number of cracks decrease with increasing the layer thickness. Also, Brazilian tensile strength is minimum when bedding layer angle is between 45° and 75°. The maximum one is related to layer angle of 90°.

      • KCI등재

        Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)

        Hadi Haeri,Vahab Sarfarazi,Mohammad Fatehi Marji 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.25 No.4

        In this paper the effect of confining pressure and tunnel depth on the ground vertical settlement has been investigated using particle flow code (PFC2D). For this perpuse firstly calibration of PFC2D was performed using both of tensile test and triaxial test. Then a model with dimention of 100 m × 100 m was built. Acircular tunnel with diameter of 20 m was drillled in the middle of the model. Also, a rectangular tunnel with wide of 10 m and length of 20 m was drilled in the model. The center of tunnel was situated 15 m, 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m and 60 m below the ground surface. these models are under confining pressure of 0.001 GPa, 0.005 GPa, 0.01 GPa, 0.03 GPa, 0.05 GPa and 0.07 GPa. The results show that the volume of colapce zone is constant by increasing the distance between ground surface and tunnel position. Also, the volume of colapce zone was increased by decreasing of confining pressure. The maximum of settlement occurs at the top of the tunnel roof. The maximum of settlement occurs when center of tunnel was situated 15 m below the ground surface. The settlement decreases by increasing the distance between tunnel center line and measuring circles in the ground surface. The minimum of settlement occurs when center of circular tunnel was situated 60 m below the surface ground. Its to be note that the settlement increase by decreasing the confining pressure.

      • KCI등재

        Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression

        Hadi Haeri,Vahab Sarfaraz,Zheming Zhu,Mohammad Fatehi Marji 국제구조공학회 2019 Smart Structures and Systems, An International Jou Vol.23 No.5

        In this paper, the interaction between notch and micro pore under uniaxial compression has been performed experimentally and numerically. Firstly calibration of PFC2D was performed using Brazilian tensile strength, uniaxial tensile strength and biaxial tensile strength. Secondly uniaxial compression test consisting internal notch and micro pore was performed experimentally and numerically. 9 models consisting notch and micro pore were built, experimentally and numerically. Dimension of these models are 10 cm *10 cm* 5 cm. the length of joint is 2 cm. the angularities of joint are 30°, 45° and 60°. For each joint angularity, micro pore was situated 2cm above the lower tip of the joint, 2 cm above the middle of the joint and 2 cm above the upper of the joint, separately. Dimension of numerical models are 5.4 cm*10.8 cm. The size of the cracks was 2 cm and its orientation was 30°, 45° and 60°. Diameter of pore was 1cm which situated at the upper of the notch i.e., 2 cm above the upper notch tip, 2 cm above the middle of the notch and 2 cm above the lower of the notch tip. The results show that failure pattern was affected by notch orientation and pore position while uniaxial compressive strength is affected by failure pattern.

      • KCI등재

        Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

        Hadi Haeri,Nader Mirshekari,Vahab Sarfarazi,Mohammad Fatehi Marji 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.26 No.5

        In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

      • Investigation of the tensile behavior of joint filling under experimental test and numerical simulation

        Jinwei Fu,Hadi Haeri,Vahab Sarfarazi,Mohammad Fatehi Marji,Mengdi Guo 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.81 No.2

        In this paper, tensile behavior of joint filling has been investigated under experimental test and numerical simulation (particle flow code). Two concrete slabs containing semi cylinder hole were prepared. These slabs were attached to each other by glue and one cubic specimen with dimension of 19 cm×15 cm×6 cm was prepared. This sample placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, two different joint filling thickness i.e., 3 mm and 6 mm were prepared and tested in the laboratory to measure their direct tensile strengths. Concurrent with experimental test, numerical simulation was performed to investigate the effect of hole diameter, length of edge notch, filling thickness and filling length on the tensile behavior of joint filling. Model dimension was 19 cm×15 cm. hole diameter was change in four different values of 2.5 cm, 5 cm, 7.5 cm and 10 cm. glue lengths were different based on the hole diameter, i.e., 12.5 cm for hole diameter of 2.5 cm, 10 cm for hole diameter of 5 cm, 7.5 cm for hole diameter of 7.5 cm and 5 cm for hole diameter of 10 cm. length of edge notch were changed in three different value i.e., 10%, 30% and 50% of glue length. Filling thickness were changed in three different value of 3 mm, 6 mm and 9 mm. Tensile strengths of glue and concrete were 2.37 MPa and 6.4 MPa, respectively. The load was applied at a constant rate of 1 kg/s. Results shows that hole diameter, length of edge notch, filling thickness and filling length have important effect on the tensile behavior of joint filling. In fixed glue thinks and fixed joint length, the tensile strength was decreased by increasing the hole diameter. Comparing the results showed that the strength, failure mechanism and fracture patterns obtained numerically and experimentally were similar for both cases.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼